TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
 TA8132AN,TA8132AF,TA2012N,TA2012F

3V AM / FM IF + MPX
 (For Digital Tuning System)

TA8132AN, TA8132AF and TA2012N, TA2012F are the AM / FM IF+ST DET system ICs, which are designed for DTS radios.
These are included many functions and these can be used for digital tuning system with IF counter.

Features

- Built-in AM / FM IF and FM stereo PLL multiplex decoder.
- Suitable for combination with digital tuning system which is included IF counter.
O One terminal type AM / FM IF count output (auto stop signal) for IF counter of digital tuning system.

FM: 10.7 MHz or 1.3375 MHz ($1 / 8$ dividing) changeable by external switch
AM: 450 kHz
\bigcirc Built-in mute circuit for IF count output.
It is controlled by the IF request signal from digital tuning system,

Pin(8) level: High \rightarrow come out

$$
\text { Low } \rightarrow \text { non output }
$$

\bigcirc Adjustable for IF count output sensitivity by external resistance of $\operatorname{pin}(2)$.

- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector circuit and FM ST DET VCO circuit.

Weight
SDIP24-P-300-1.78: 1.2g (typ.)
SSOP24-P-300-1.00:0.31g (typ.)

- S curve characteristics of FM detection output in TA8132AN, TA8132AF and TA2012N, TA2012F are reverse to each other.

TA8132AN, TA8132AF: Reverse characteristic.
TA2012N, TA2012F: Normal characteristic.

- Built-in one terminal type AM low cut circuit.
- TA2053F is reverse pin type of TA2012F.
- Operating supply voltage range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

VCC (opr.) $=1.8 \sim 8.0 \mathrm{~V}$

Block Diagram

(Note)
We recommend
Ceramic resonator: CSB456F18
Ceramic discriminator: CDA10.7MG18 (MURATA MFG CO., LTD)

Explanation Of Terminals

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Item	Internal Circuit	DC Voltage (V) (at no Signal)	
			AM	FM
1	AM RF IN		3.0	3.0
2	- IF count output sensitivity adjust terminal - FM IF divider control terminal		-	-
3	AM OSC		3.0	3.0
4	AM OSC OUT		2.7	3.0
5	V_{CC}	-	3.0	3.0
6	AM LOW CUT		2.3	2.3

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Item	Internal Circuit	DC Voltage (V) (at no Signal)	
			AM	FM
7	AGC		0.25	0.35
8	IF OUT SW		-	-
9	IF OUT		3.0	3.0
10	TUN LED (tuning LED)		-	-
11	ST LED (stereo LED)		-	-
12	GND	-	0	0
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { R-OUT } \\ & \text { L-OUT } \end{aligned}$		1.0	1.0

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Item	Internal Circuit	DC Voltage (V) (at no Signal)	
			AM	FM
15	VCO		2.5	$\begin{gathered} 2.5 \\ \text { (VCO } \\ \text { stop } \\ \text { mode) } \end{gathered}$
16	LPF2 - LPF terminal for synchronous detector - Bias terminal for AM / FM switch circuit $\mathrm{V}_{16}=\mathrm{V}_{\mathrm{CC}} \rightarrow \mathrm{AM}$ $V_{16}=$ open $\rightarrow F M$		3.0	2.2
17	LPF1 - LPF Terminal for phase detector - VCO stop terminal $\mathrm{V}_{17}=\mathrm{V}_{\mathrm{CC}} \rightarrow \mathrm{VCO}$ stop		2.7	2.2
18	FM ST DET IN		0.7	0.7
19	DET OUT		1.1	1.1

$\begin{aligned} & \text { Pin } \\ & \text { No } \end{aligned}$	Item	Internal Circuit	DC Voltage (V) (at no Signal)	
			AM	FM
20	QUAD (FM QUAD. Detector)		2.4	2.1
21	AM IF IN		3.0	3.0
22	BY-PASS By-pass for AM/FM IF AMP		2.3	2.8
23	AM MIX OUT		3.0	3.0
24	FM IF IN		3.0	3.0

Application Note

1. How to control the IF count output signal (pin(9) output)

		TUN LED	
	ON	OFF	
V_{8}	H	Come out	Non output
	L	Non output	Non output

- Whether or not there is the IF count output signal (pin(9) output) is determined by the and of the pin(8) control voltage: V8 and tuning LED on / off switching.
In the condition of
V8: High (active high, VTH $=0.8 \mathrm{~V}$ (typ.))
TUN LED: ON ($\mathrm{V}_{\text {in }} \geq \mathrm{V}_{\mathrm{L}}+2 \mathrm{~dB} \mathrm{\mu V}$ EMF (typ.))
the IF count output signal comes out from the pin(9).
In the case of the tuning LED function is not needed, it doesn't matter the pin(10) is opened.
- The output impedance of $\operatorname{pin}(9)$ is $1.5 \mathrm{k} \Omega$ (typ.) (cf.P.4)

It is possible to reduce the IF count output signal level to add the resistance between the pin (9) and the VCC line.

- The signal waveform is the rectangular wave, and the level is $500 \mathrm{mV} \mathrm{p}_{\mathrm{p}-\mathrm{p}}$ (typ.)

2. How to control the divider of FM IF

Switch
VCC: 10.7 MHz output
GND or OPEN: 1.3375 MHz output (1 / 8 dividing)
3. How to adjust the IF count output sensitivity

- The IF count output sensitivity (search sensitivity) Can be adjusted by varying the IF AMP gain for FM and varying the MIXER gain for AM. This setting is made by changing the value of external resistance R_{2} which is connected to pin(2).

- However, this is only possible at the auto-tuning mode. (external voltage supplied to pin(8) is at high level.) The original again returns while receiving a broadcast station (supplied voltage to pin(8) is at low level.)
- The gain loss of FM IF AMP

		R2	
		0Ω	$10 \mathrm{~K} \Omega$ (Note)
$\begin{aligned} & \frac{0}{0} \\ & \sum \\ & \hline \end{aligned}$	$\begin{gathered} \text { IF } \\ (10.7 \mathrm{MHz}) \end{gathered}$	-20dB	-1dB
	$\begin{gathered} 1 / 8 \mathrm{IF} \\ (1.3375 \mathrm{MHz}) \end{gathered}$	-20dB	-1dB

(Note)

- In the condition of the 1 / 8 IF mode, it is possible to set up $R_{2}=\infty$ (OPEN).

- In the condition of IF mode, it is necessary to set up the value of R_{2} under $10 \mathrm{k} \Omega$. When the R_{2} is over $10 \mathrm{k} \Omega$ it is feared that the mode is change to the $1 / 8 \mathrm{IF}$ mode.
- The gain loss of AM MIXER

R 2	
0Ω	$10 \mathrm{~K} \Omega$
-16 dB	-1 dB

4. AM low-cut circuit

- The AM low-cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage. The external capacitor: C6 by-passes this component.
- The cut-off frequency fL is determine by the internal resistance $22 \mathrm{k} \Omega$ (typ.) and the external capacitor C_{6} as following;

$$
\mathrm{f}=\frac{1}{2 \times \pi \times 22 \times 10^{3} \times \mathrm{C}_{6}}(\mathrm{~Hz})
$$

- In the case of the AM low-cut function is not needed, set up the value of C 6 over $0.47 \mu \mathrm{~F}$. In the condition of $\mathrm{C}_{6} \geq 0.47 \mu \mathrm{~F}$, the frequency characteristic has flat response at the low frequency.

5. AM local oscillator buffer output

- The output impedance of AM local oscillator buffer output pin (pin(4)) is 750Ω (typ.) (cf.P.3)
- It is possible to reduce the output level to add the resistance between the pin(4) and VCC line. The signal waveform is the rectangular wave, and the level is 500 mV p-p (fOSC $=1.45 \mathrm{MHz}$, typ.)
- The higher local oscillation frequency (fOSC) to be, the lower buff output level to be owing to the load capacity. So, in the case that it is connected to other circuits, take care of the input capacity of these circuits and stray capacity of wire.

6. Tuning LED driver and stereo LED driver

- The tuning LED driver and stereo LED driver don't have current limit resistance shown in the right figure. So, it is necessary to add the current limit resistance: $\mathrm{R}_{10}, \mathrm{R}_{11}$.
- Set up the values of $\mathrm{R}_{10}, \mathrm{R}_{11}$ to keep the drive currents ID10, ID11 under 10 mA .

7.FM detection circuit

For the FM detection circuit,detection coil is able to use instead of ceramic discriminator.
Recommended circuit and recommended coil are as follows.
In this case, please take care that $\mathrm{V}_{\text {in }}$ (lim.) falls a little.

Test Frequency	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Turns				Wire (mm $)$	REF
			1-2	2-3	1-3	4-6		
10.7MHz	100	100	-	-	12	-	0.12 UEW	SUMIDA ELECTRIC CO., LTD 2153-4095-189 or equivalent

8. FM / AM switch and forced monaural switch

FM / AM switch over and stere / forced monaural switch over are done by internal PNP transistors ON / OFF which are connected to pin(16) and pin (17) respectively.

The threshold voltages of these PNP transistors are $\mathrm{V}_{\mathrm{th}}=\mathrm{VCC}$, and for switching, we recommend to use mechanical switch.
(Direct short to VCC line.)
In the case of the electrical switch over by transistor, set up VCE
(saturation voltage between collector and emitter) 50 mV or less, otherwise there are some cases that it does not become the AM mode and force monaural mode.
When these external switches are ON, the currents which flow into pin(16) and $\operatorname{pin}(17)$ are $100 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$ respectively. (Typical value at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$)

Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Rating	Unit	
Supply voltage	V $_{\text {CC }}$	8	V	
LED current	I LED	10	mA	
LED voltage	V $_{\text {LED }}$	8	V	
Power dissipation	TA8132AN	PD (Note)	1200	mW
	TA8132AF		400	
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-25 \sim 75$	${ }^{\circ} \mathrm{C}$	
Storage temperature				

(Note): Derated above $25^{\circ} \mathrm{C}$ in the proportion of $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA8132AN, TA2012N and of $3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA8132AF, TA2012F.

Electrical characteristics

Unless Otherwise Specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=3 \mathrm{~V}, \mathrm{SW}_{1} \rightarrow 10 \mathrm{k} \Omega, \mathrm{SW}_{3} \rightarrow \mathrm{OFF}$ FM IF: $\mathrm{f}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 22.5 \mathrm{kHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
$A M: f=1 \mathrm{MHz}, M O D=30 \%, f_{m}=1 \mathrm{kHz}$
MPX: $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

Characteristic			Symbol	Test Circuit	Test Condition	Min.	Typ.	Max.	Unit
Supply current			ICC (FM)	1	FM mode, $\mathrm{V}_{\text {in }}=0$	-	11.0	14.0	mA
			ICC (AM)	1	AM mode, $\mathrm{V}_{\text {in }}=0$	-	10.5	13.5	
$\begin{aligned} & \text { FM } \\ & \text { IF } \end{aligned}$	Input limiting voltage		$\mathrm{V}_{\text {in }}$ (lim.)	1	-3dB limiting point	41	46	51	$\begin{aligned} & \mathrm{dB} \mu \mathrm{~V} \\ & \mathrm{EMF} \end{aligned}$
	Recovered output voltage		VOD	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	50	75	100	mV rms
	Signal to noise ratio		S/N	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	-	65	-	dB
	Total harmonic distortion		THD	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	-	0.2	-	\%
	AM rejection ratio		AMR	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	38	-	dB
	LED on sensitivity		V_{L}	1	$\mathrm{L}=1 \mathrm{~mA}$	48	53	58	$\begin{aligned} & \mathrm{dB} \mathrm{\mu V} \\ & \mathrm{EMF} \end{aligned}$
	IF count output frequency	IF	f_{IF} (FM)	1	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}, \\ & \mathrm{SW} \mathrm{~W}_{2} \rightarrow \mathrm{~V}_{\mathrm{CC}}, \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$	-	10.7	-	MHz
		$1 / 8 \mathrm{IF}$	$\mathrm{f}_{1 / 8 \mathrm{l}}$ (FM)	1	$\mathrm{V}_{\mathrm{in}}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF, $\mathrm{SW}_{2} \rightarrow \mathrm{GND}, \mathrm{SW}_{3} \rightarrow \mathrm{ON}$	1.3374	1.3375	1.3376	
	IF count output voltage	IF	V_{IF} (FM)	1	$\mathrm{V}_{\text {in }}=61 \mathrm{~dB} \mu \mathrm{~V}$ EMF, $\mathrm{SW}_{2} \rightarrow \mathrm{~V}_{\mathrm{Cc}}, \mathrm{SW}_{3} \rightarrow \mathrm{ON}$	350	500	-	$m V_{p-p}$
		$1 / 8 \mathrm{IF}$	$\mathrm{V}_{1 / 8 \mathrm{IF}}$ (FM)	1	$\begin{aligned} & \mathrm{V}_{\text {in }}=61 \mathrm{~dB} \mathrm{\mu V} \text { EMF, } \\ & \text { SW }_{2} \rightarrow \text { GND }, \text { SW }_{3} \rightarrow \text { ON } \end{aligned}$	350	500	-	
	IF count output sensitivity		IF ${ }_{\text {sens. }}$ (FM)	1	$\begin{aligned} & \mathrm{SW}_{1 \rightarrow 0}, \mathrm{SW}_{2 \rightarrow \mathrm{GND}}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$	-	76	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
			$\begin{aligned} & \mathrm{SW}_{1} \rightarrow 510 \Omega, \mathrm{SW}_{2} \rightarrow \mathrm{GND}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$		-	68	-		
			$\begin{aligned} & \mathrm{SW}_{1 \rightarrow 0}, \mathrm{SW}_{2 \rightarrow}, \mathrm{~V}_{\mathrm{CC}}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$		-	77	-		
			$\begin{aligned} & \mathrm{SW}_{1} \rightarrow 510 \Omega, \mathrm{SW}_{2 \rightarrow}, \mathrm{~V}_{\mathrm{CC}}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$		-	69	-		

	Characteristic	Symbol	Test Circuit	Test Condition	Min.	Typ.	Max.	Unit
AM	Gain	G_{V}	1	$\mathrm{V}_{\text {in }}=26 \mathrm{~dB} \mu \mathrm{~V}$ EMF	28	57	85	mV rms
	Recovered output voltage	$V_{\text {OD }}$	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	50	75	100	
	Signal to noise ratio	S/N	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	41	-	dB
	Total harmonic distortion	THD	1	$V_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	1.0	-	\%
	LED on sensitivity	V_{L}	1	$\mathrm{L}=1 \mathrm{~mA}$	21	26	31	$\begin{aligned} & \mathrm{dB} \mu \mathrm{~V} \\ & \mathrm{EMF} \end{aligned}$
	Local OSC buff. output voltage	Vosc (AM)	1	$\mathrm{fosc}=1.45 \mathrm{MHz}$	350	500	-	$m V_{p-p}$
			2	$\mathrm{fOSC}=27 \mathrm{MHz}$	-	500	-	
	IF count output voltage	$\mathrm{V}_{\text {IF }}(\mathrm{AM})$	1	$\mathrm{V}_{\text {in }}=39 \mathrm{~dB} \mu \mathrm{~V}$ EMF, $\mathrm{SW}_{3} \rightarrow \mathrm{ON}$	350	500	-	$m V_{p-p}$
	IF count output sensitivity	$\mathrm{IF}_{\text {sens. }}$ (AM)	1	$\begin{aligned} & \mathrm{SW}_{1 \rightarrow 0}, \mathrm{SW}_{2 \rightarrow \mathrm{GND}}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$	-	49	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
				$\begin{aligned} & \mathrm{SW}_{1} \rightarrow 510 \Omega, \mathrm{SW}_{2} \rightarrow \mathrm{GND}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$	-	42	-	
				$\begin{aligned} & \mathrm{SW}_{1} \rightarrow 0, \mathrm{SW}_{2 \rightarrow}, \mathrm{~V}_{\mathrm{CC}}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{on} \end{aligned}$	-	49	-	
				$\begin{aligned} & \mathrm{SW}_{1} \rightarrow 510 \Omega, \mathrm{SW}_{2} \rightarrow, \mathrm{~V}_{\mathrm{CC}}, \\ & \mathrm{SW}_{3} \rightarrow \mathrm{ON} \end{aligned}$	-	42	-	
Pin(19) output resistance		R_{19}	1	FM mode	-	0.6	-	$\mathrm{k} \Omega$
		AM mode		-	12	-		

Characteristic			Symbol	Test Circuit	Test Condition		Min.	Typ.	Max.	Unit	
MPX	Input resistance		RIN	1	-		-	25	-	$k \Omega$	
	Output resistance		ROUT	1	-		-	5	-		
	Max. composite signal input voltage		$V_{\text {in MAX }}$ (stereo)	1	$\begin{aligned} & L+R=90 \%, P=10 \% \\ & T H D=3 \%, S W 9 \rightarrow L P F: O N \end{aligned}$		-	350	-	mV rms	
	Separation		Sep	-	$\begin{aligned} & \mathrm{L}+\mathrm{R}=135 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{P}=15 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}}, \\ & \mathrm{SW}, \end{aligned}$	$\mathrm{fm}_{\mathrm{m}}=100 \mathrm{kHz}$	-	42	-	dB	
			$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$			35	42	-			
			$\mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}$			-	42	-			
	Total harmonic distortion	Monaural		THD (monaural)	1	$\mathrm{V}_{\text {in }}=150 \mathrm{mV} \mathrm{rms}^{\text {(mono }}$)		-	0.2	-	\%
		Stereo		$\begin{aligned} & \text { THD } \\ & \text { (stereo) } \end{aligned}$		$\begin{aligned} & \mathrm{L}+\mathrm{R}=135 \mathrm{mV} V_{\mathrm{rms}}, \\ & \mathrm{P}=15 \mathrm{~m} V_{\mathrm{rms}} \\ & \mathrm{SW} \mathrm{~S}_{\mathrm{g}} \rightarrow \mathrm{LPF}: \mathrm{ON} \end{aligned}$		-	0.2	-	
	Voltage gain		GV (MPX)	1	$\mathrm{V}_{\text {in }}=150 \mathrm{mV} \mathrm{V}_{\text {rms }}$ (mono)		-5	-3	-1	dB	
	Channel balance		C.B.	1	$\mathrm{V}_{\text {in }}=150 \mathrm{mV} \mathrm{Vrms}^{\text {(mono) }}$		-2	0	2	dB	
	Stereo LED sensitivity	ON	$\mathrm{V}_{\mathrm{L}}(\mathrm{ON})$	1	Pilot input		-	8	15	mV rms	
		OFF	V_{L} (OFF)				2	6	-		
	Stereo LED hysteresis		V_{H}	1	To LED turn off from LED turn on		-	2	-	mV rms	
	Capture range		C.R.	1	$P=15 \mathrm{mV} \mathrm{V}_{\text {rms }}$		-	± 1.3	-	\%	
	Signal to noise ratio		S / N	1	$\mathrm{V}_{\text {in }}=150 \mathrm{mV} \mathrm{rrms}^{\text {(mono) }}$		-	78	-	dB	

Test Circuit 1

Coil Data (test circuit 1)

Coil No.	f	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Turn				Wire (mm)	RED. (Coil No.)
					1-2	2-3	1-3	4-6		
T ${ }_{1}$ AM OSC	796kHz	288	-	115	13	73	-	-	0.08 UEW	4147-1356-038 (S)
T 2 AM IFT	455 KHz	-	180	120	-	-	180	15	0.06 UEW	2150-2162-165 (S)

(S): SUMIDA ELECTRIC Co., Ltd.
VARACTOR DIODE

Test Circuit 2

Coil Data (test circuit 2)

Coil No.	f	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{O}} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Turn				Wire (mm)	REF. (Coil No.)
					1-2	2-3	1-3	4-6		
T AM OSC	7.96 MHz	1.4	-	84	1	6	7	-	0.08 UEW	(T) 7PL-1344Y

(T): TOKO Co., Ltd.
T:AM OSC

FM IF

(\%) OHD NOILYOLSIQ JINOWYVH 7VIO1

FM IF

FM IF

AMBIENT TEMPERATURE Ta (${ }^{\circ} \mathrm{C}$)

Package Dimensions

Weight: 1.2 g (typ.)

Package Dimensions

SSOP24-P-300-1.00
Unit : mm

Weight: 0.31 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

