

LC66354B, 66356B, 66358B

Four-bit Single-Chip Microcontrollers

 On-Chip 4 K/6 K/8 K-byte ROM
Overview

The LC66354B, LC66356B and LC66358B are 42-pin package four-bit CMOS microcontrollers that integrate on a single chip all functions required in a control microcontroller, including ROM, RAM, I/O ports, serial interfaces, comparator inputs, three-value inputs, timers and an interrupt system. These products differ from the earlier LC66358A series in their power supply voltage range and operating speed specifications.

Features and Functions

- ROM (with 4 K -, 6 K - and 8 K -byte capacities) and RAM (512 4-bit digits) on chip
- LC66000 series compatible instruction set (128 instructions)
- A total of 36 I/O port pins
- Two eight-bit serial interfaces that can be eornected in cascade to form a 16-bit interface
- Instruction cycle time: 0.92 to $10 \mu \mathrm{~s}(3 \% 5.5 \mathrm{~V})$ The earlier LC66358A series had instruction cyctetimes of from 1.96 to $10 \mu \mathrm{~s}$ (at 3 to 5.5 V) and fronte.92 2 to $10 \mu \mathrm{~s}$ (at 2.2 to 5.5 V).
- Powerful timer and prescaler functionss

Time limit timer, event counter pulse width measurement and square wave output using a 1% bit timer.
Time limit tiner, event counter, PWM output and square wave output using ants-bit timer.
Time base fuinction usinea 18 bit presealer.

- Powerfilinterrunt system with eight interrupts and eight vector hocations
External ipterrupts: three inferrupts and three vector locations
Interng anterrupts: fiyênterrupts and five vector locatiens
- Flexible 10 functions

Compatator inputs three-value inputs, 20 mA drive outputsm 15 V withstand voltage, pull-up or open-drain toption switching
Rưinaway dêtection function (watchdog timer) option
Efght-bit//O function
Power refuction functions using halt and hold modes
Packages: DIP42S, QIP48E (QFP48E)

- Eyaluation LSI: used together

LC66599 (evaluation chip) + EVA850/800TB6630X
— LC66E308 (on-chip EPROM microcontroller)
. Any and all SANYO products described or contained herein do not have specifications that can handle applications'that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Series Structure

Product name	Pins	ROM capacity	RAM capacity	Package	Features
LC66304A/306A/308A	42, 48	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K}$ bytes	512 W	DIP42S QFP48E	Nopmal version 4.0 tor: $6.0 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66404A/406A/408A	42, 48	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K}$ bytes	512 W	DIP42S QFP48E	
LC66506B/508B/512B/516B	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~K}$ bytes	512 W	DIP64S QFP64A	
LC66354A/356A/358A	42, 48	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K}$ bytes	512 W	DIP42S QFP48E	Low-voltage version 12 R to $5.5 \mathrm{~V} / 3.92 \mathrm{\mu s}$
LC66354S/356S/358S*	44	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K}$ bytes	512 W	QFP44M	
LC66556A/558A/562A/566A	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~K}$ bytes	512 W	DIP64S QFP64E *	
LC66354B/356B/358B	42, 48	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~K}$ bytes	512 W	DIP42S QFP48E	Low-voltage, hightspeed vepision$3 \in \text { to } 5.5 \mathrm{~V} 0, \mathrm{O} 2 \mathrm{~s}$
LC66556B/558B*	64	$6 \mathrm{~K} / 8 \mathrm{~K}$ bytes	512 W	DIP64S QFP64E	
LC66562B/566B	64	$12 \mathrm{~K} / 16 \mathrm{~K}$ bytes	512 W		
LC66E308	42, 48	EPROM, 8 K bytes	512 W	DIC42S (window) \% QFC48. (windowl	Evalluation window and OTP versions 45 to $5.5 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66P308	42, 48	OTPROM, 8 K bytes	512 W		
LC66E408	42, 48	EPROM, 8 K bytes	512 W	DIC42S (window) ©FC48 quindow)	
LC66P408	42, 48	OTPROM, 8 K bytes	512 W	DIP42S ${ }^{\text {F }}$ Qp48E	
LC66E516	64	EPROM 16 K bytes	512 W		
LC66P516	64	OTPROM 16 K bytes	512 W	DIP64	

Note: * Under development
Pin Assignments

We reconmend uting reflow soldering methods to mount the QFP package version.
Contact your Sanyo sles representative to discuss process conditions if techniques in which the whole package is imfelsed intis soldet bath (solder dip or spray techniques) are used.

System Block Diagram

Differences between the LC66354B, LC66356B and LC66358B and the LC6630X Series

Parameter	(including Che. LC66599evaluation hip)	LC6635XB series
System Differences - Hardware wait time (number of cycles) when HOLD mode is cleared	65536 cycless 	16384 cycles At $4 \mathrm{MHz}(\mathrm{Tcyc}=1 \mu \mathrm{~s})$: About 16 ms
- Value of timer 0 on reset (including the value after HOLD mode is cfeared)	The 6 dee FTOMs:oaded	The value FFC is loaded.
Main differences in product characteristics - Operating power supply voltage/operating speed. (cycle time)		3.0 to $5.5 \mathrm{~V} / 0.92$ to $10 \mu \mathrm{~s}$ LC6635XA, 2.2 to $5.5 \mathrm{~V} / 3.92$ to $10 \mu \mathrm{~s}$, 3.0 to $5.5 \mathrm{~V} / 1.96$ to $10 \mu \mathrm{~s}$

Note: 1. An RC oscillator cannotibe used withet ES6354B, LC66356B and LC66358B.
2. In addition, there are differences in fhe output currents, comparator input voltages and other aspects. For details, refer to the individiay ctalogstor the LC66308A, LC66E308 and the LC66P308.
3. These points require care when using the LC66E30\% orr LC66P308 for evaluation purposes.

Package Dimensions

unit: mm

3025B-DIP42S

unit: mm
3156-QFP48E

Pin Function Overview

Continued from preceding page.

Pin	I/O	Overview	Output drive type	Option	Value on reset
P50 P51 P52 P53/INT2	I/O	I/O ports P50 to P53 - Input or output in 4-bit or 1-bit units - I/O in 8 -bit units when used in conjunction with P40 to P43 - Output of 8-bit ROM data when used in conjunction with P40 to P43 - P53 is also used for the INT2 interrupt request.	- P-channel: pull-up MOS type - N-channel: intermediate sink current type (+15 V withstand voltage in OD)	Either with pull-u'MOS or n-channel OE ofutput	
$\begin{gathered} \text { P60/SI1 } \\ \text { P61/SO1 } \\ \text { P62/SCK1 } \\ \text { P63/PIN1 } \end{gathered}$	1/O	I/O ports P60 to P63 - Input or output in 4-bit or 1-bit units - P60 is also used as the serial input SI1 pin. - P61 is also used as the serial output SO1 pin. - P62 is also used as the serial clock SCK1 pin. - P63 is also used as the timer 1 event counter input.	- P-channel: CMOS type - N-channel: intermediate sink current type (+15 V , withstand voltage in	- Either CMOS or bichanne OBroutput	H
PC2/VREFO PC3/VREF1	I/O	I/O ports PC2 and PC3 - Output in 4-bit or 1-bit units - PC2 is also used as the VREF0 comparator comparison voltage pin. - PC3 is also used as the VREF1 comparator comparison voltage pin:	- P-channel: CMOS type - N-channele biteffiediate sink currehtype	Either CMOS or n-channe Ob oblitput	H
PDO/CMPO PD1/CMP1 PD2/CMP2 PD3/CMP3	1	Dedicated input ports PD0 to PD3: - Can be switched to use ascomparator inputs under program control. The PDO comparison volfage is VREFO. The PD1 to PD3 Eomparison voltage is VREF $1 /$ Comparisons can be spesittedin units of PFOPD2, and PD2 anct PD3 together.			Normal input
PE0/TRA PE1/TRB	I	Dedicâted input ports - Can be switched to finctionas three value inputsinder program controf:			Normal input
$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$		\$ystem ched oscllatelexternal connection When anexternaliclock is used leave OsGa openandinput the ciock signal toOSClyms		- Selection of either ceramic oscillator or external clock input.	
		Wvstemreset input The CPU is initialized if a low level is inteut to RES when the P33/HOLD pin is Gigh.			
TEST		CPU test piri this pin must be connected to V_{SS} durifig formal operation.			
$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$		Power supply connections			

Note: Pull-up MOS output:........A pull-up MOS transistor is connected to the output circuit.
CMOS output:Complementary output
OD output:.......................Open drain output

User Option Types

1. Port 0 and 1 reset time output level option

The output levels of ports 0 and 1 can be selected from the following two options in 4-bit units.

Option	Conditions and notes
High level output at reset time	Ports 0 and/or 1 in 4 -bit sets
Low level output at reset time	Ports 0 and/or 1 in 4-bit sets

2. Oscillator circuit option
Option

Note: There is no RC oscillator option.
3. Watchdog timer option

The presence or absence of a watchdog timer canbe selected as anotion.
4. Port output type option

- One of the following two output eircuit options can be selected for each bit in ports P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5. P6 and PC.

- The PD comparator inputs and the PE three-value inputs are selected in software.

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Note: 1. Applies to open drain output specification pins. The rating from the "ther pipentyappite for specifications other than the open drain output specification.
2. Levels up to the free-running oscillation level are allowed for the bscillator inputhed output pins
3. Inflow current
4. Outflow current (Applies to the pull-up output specificatiof afid CMOSWexput specification pinsi)
5. We recommend using reflow soldering methods to moutt ehe QFP Brackage version.

Contact your Sanyo sales representative to discuss poges conditions techifques in which the whole package is immersed in a solder bath (solder dip or spray techniques) are used.

Allowable Operating Ranges at $\mathrm{Ta}=30^{2}$ to $+70^{\circ} \mathrm{C}$, $\mathrm{V}_{s} \xi=0 \mathrm{~V} \mathrm{~V}_{\mathrm{V}} \mathrm{DD}=3.0$ to 5.5 V unless otherwise specified

Parameter	Symbol			Ratings			Unit	Note
		\% Applicabepins,	A ${ }^{\text {a }}$	min	typ	max		
Operating supply voltage	V_{DD}		$0.92 \leq$ Tcyc $\leq 10 \mu \mathrm{~s}$	3.0		5.5	V	
Memory hold supply voltage	$\mathrm{V}_{\mathrm{DD}^{\text {e }}}(\mathrm{H})$		HOLD mode	1.8		5.5	V	
Input high level Voltage	N	P2 23 (excepiffor (he P3 P4, P5, P6\%	With the output n-channel transistor off	$0.8 \mathrm{~V}_{\mathrm{DD}}$		13.5	V	1
	$\mathrm{V}_{\mathrm{IH}}\left(2{ }^{2}\right.$	P3MMSD, RESOSC1	With the output n-channel transistor off	0.8 V DD		$V_{\text {DD }}$	V	2
	Vin (3)	PO, P1, PC, PDFPE	With the output n-channel transistor off	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V	3
	Vintis)	FE	Using three-value input	0.8 V DD		V_{DD}	V	
Middle level input vilitage	$\cdots \mathrm{V}_{1 M}$	PE	Using three-value input	$0.4 \mathrm{~V}_{\mathrm{DD}}$		$0.6 \mathrm{~V}_{\mathrm{DD}}$	V	
Common mode ifiput voltage range	$\mathrm{V}_{\text {CMM }} \mathrm{V}^{\text {(1) }}$	PDG, PC2	Using comparator input	1.5		$V_{\text {DD }}$	V	
	Vamiv (2)	PD, PD2, PD3, PC3		$\mathrm{V}_{\text {SS }}$		$V_{D D}-1.5$	V	
Inpuli low level veftage	$\mathrm{V}_{\mathrm{IL}}(1)^{2}$	P2̛, P3 (except for the P33/HOLD pin), P5, P6, $\overline{R E S}, ~ O S C 1$	With the output n-channel transistor off			0.2 V ${ }_{\text {DD }}$	V	1
	$\mathrm{V}_{\mathbb{E}}(\%)$	P33/ ${ }^{\text {HOLD }}$	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V			$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$y x_{i}(3)$	P0, P1, P4, PC, PD, PE, TEST	With the output n-channel transistor off	VSS		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V	3
	部 $\mathrm{IL}(4)$	PE	Using comparator input	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
Operating frequêncy (instruction cycle time)	$\begin{gathered} \mathrm{f}_{\mathrm{OP}} \\ \left(\mathrm{~T}_{\mathrm{CYC}}\right) \\ \hline \end{gathered}$			$\begin{array}{r} \hline 0.4 \\ (10) \\ \hline \end{array}$		$\begin{array}{r} 4.35 \\ (0.92) \\ \hline \end{array}$	$\begin{gathered} \mathrm{MHz} \\ (\mu \mathrm{~s}) \end{gathered}$	

Note: 1. Applies to open drain specification pins. However, the rating for $\mathrm{V}_{\mathrm{IH}}(2)$ applies to the $\mathrm{P} 33 / \overline{\mathrm{HOLD}}$ pin. Ports P2, P3 and P6 cannot be used as input pins when CMOS output specifications are used.
2. Applies to open drain specification pins.
3. When PE is used as a three-value input, V_{IH} (4), V_{IM} and V_{IL} (4) apply. Port P3 cannot be used as input pins when CMOS output specifications are used.

Continued from preceding page.

Parameter		Symbol	Applicable pins	Conditions	Ratings			Unit	Note	
		min			typ	max				
External clock input conditions	Frequency		$\mathrm{f}_{\text {ext }}$	OSC1	See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option)				MHz	
	Pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{ext}} \mathrm{H} \\ & \mathrm{t}_{\mathrm{ext}} \mathrm{~L} \end{aligned}$	See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit optiont					ns		
	Rise/fall times	$\begin{aligned} & \mathrm{t}_{\mathrm{ext}} R \\ & \mathrm{t}_{\mathrm{ext}} \mathrm{~F} \end{aligned}$	See Figure 1. With the signal inputto OSC1 and with OSC2 open (with exterfial clock input selected for the oscillator cireuit option				30	ns		

Electrical Characteristics at $\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.5$ to 5.5 V unléss otherwise specified

Continued on next page.

LC66354B, 66356B, 66358B

Continued from preceding page.

Note: 1 . Coinmon inpefland outplf pôrts with open-drain output specifications are specified for the state with the output n-channel transistor turned off. These pins cannot be fised for input when the CMOS output specification option is selected.
2. Common iniput and oütpût ports with open-drain output specifications are specified for the state with the output n-channel transistor turned off. Ratings fô: pull-ap:butput specification pins are stipulated for the output pull-up current $I_{\text {PO }}$. These pins cannot be used for input when the CMOS output specification option is selected.
3. Stipulated for CMÖS output specifications with the output n-channel transistor in the off state.
4. Stipulated for pull-up output specifications with the output n -channel transistor in the off state.
5. Stipulated for open-drain output specifications with the output n-channel transistor in the off state.
6. In the reset state

Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Time
Table 1 Ceramic Oscillator Guaranteed Constants

External capacitance type	2 MHz (Murata) CSA L.00才V 4 4 y	$\mathrm{C} 1=33 \mathrm{pFF} \pm 10 \%$	2 MHz (Kyocera) KBR2.0MS	$\mathrm{C} 1=47 \mathrm{pF} \pm 10 \%$
		$\mathrm{C} 2 \mathrm{~F} 33 \mathrm{pF} \pm 10 \%$		$\mathrm{C} 2=47 \mathrm{pF} \pm 10 \%$
		Rod 0^{0}		$\mathrm{Rd}=0 \Omega$
	\% \%	Cf $=33 \mathrm{pF} \pm 10 \%$	4 MHz (Kyocera) KBR4.0MS	$\mathrm{C} 1=33 \mathrm{pF} \pm 10 \%$
	4 MHz (muratay ${ }^{\text {a }}$ SA4.00MG	C2 $=33 \mathrm{pF} \pm 10 \%$		$\mathrm{C} 2=33 \mathrm{pF} \pm 10 \%$
		$\mathrm{Rd}=0 \Omega$		$\mathrm{Rd}=0 \Omega$

Figure 4 Serial I/O Timing

Figure 6 Input Timing for INTO, INT1, INT2, PIN1 and RES

Figure 7 Comparator Response Speed Trs Timing

Application Development Tools

Programs for the LC66354B, LC66356B and LC66358B microcontrollers are developed on an IBM-PC compatible personal computer running the MS-DOS operating system. A cross assembler and other tools are available. To make application development more convenient, Sanyo also provides a program debugging unit (EVA8OO/850), an evaluation board (EVA800/850-TB6630X), an evaluation chip (LC66599) and an on-chip EPROM mieroprocessor (LC66E308).

1. Program debugging unit (EVA800/850)

This is an emulator that provides functions for EPROM witing and serial data communications with external equipment (such as a host computer). It suppofts applicaurn deyelopment in machine language and program modification. Its main debugging functionsinclude beaking, stepping afid tracing. (The MPM6630X is used for the EVA800/850 monitor ROM.)
2. Evaluation chip board (EVA800/850 TB6630X)

The evaluation chip signals and portsiare ouffut tothe 42-pinconnector and when the output cable is connected, the evaluation chip board converts these signats to the same pir assignments as those on the mass production chip. The evaluation chip board includes fumpersfor setting options and other states, and these jumper settings allow the evaluation chip to implement the saneI/Ocircutt types and functions as the mass production chip. However, there are differences in the HOL mode hleartiming and fif electrical characteristics.

Switches SW1 to SW8: Pull-up resistor option settings

- Set the corresponding switch to the on position for built-in pull-up resistors, and set the switch to the off position for open drain output.
- These settings can be specified for individual pins.

3. Cross Assembler

Cross assembler (file name)	Object microprocessors	Limitations on program creation
LC66S. EXE	LC66354B, 66356B, 66358B (LC66E308, 66P308) (LC66599)	SB instruction limitations - LC66354B : Only \$BÖ́ean be used. - LC66356B, 66358B : Only SB0 and ©B1 can be used. (LC66E308, 66P308) - LC66599 SBO, SB1, SB2 and SB3 can be used.

4. Simulation chip (See the LC66E308 individual product catalog for more details.)

The LC66E308 simulation chip is an on-chip EPROM microprocessor. Mounter configuration peration can be confirmed in the application product by using a dedicated conversion board the W66EP308D/408D for DIP products and the W66EP308Q/408Q for QFP products) and writing progrâms with a commercial PROM writer.

- Form

The LC66E308 has a pin arrangement and functions identicht those of the LC66354B, LC66356B and LC66358B. However, there are differences in the HOLD mode elear timing and he electrical characteristics. The figure below shows the pin assignment.

- Options

The options (the port 0 and 1 level at reset, the watchdog thind and the port output circuit types) for the microprocessor to be evaluated can be specified by ERROM, Atat The mext item describes the option data area and definitions.) This allows evaluation with the same peripherey circuits as those that will be used in the mass production product.

Option Data Area and Definitions

LC663XX Series Instruction Table (by function)

Abbreviations:
AC: Accumulator
E: \quad E register
CF: Carry flag
ZF: Zero flag
HL: Data pointer DPH, DPL
XY: Data pointer DPX, DPY
M: Data memory
M (HL): Data memory pointed to by the DPH, DPL data pointer
M (XY): Data memory pointed to by the DPX, DPY data pointer
M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPH, DeL datapointer
SP: Stack pointer
M2 (SP): Two words of data memory pointed to by the stack pointer
M4 (SP): Four words of data memory pointed to by the stack pointer
in: $\quad n$ bits of immediate data
t2: Bit specification

t 2	11	10	01	00
Bit	2^{3}	2^{2}	2^{1}	2^{0}

PCh: Bits 8 to 11 in the PC
PCm: Bits 4 to 7 in the PC
PCl : \quad Bits 0 to 3 in the PC
Fn: \quad User flag, $\mathrm{n}=0$ to 15
TIMER0: Timer 0
TIMER1: Timer 1
SIO: Serial register
P: Port
P (i4): Port indicated by 4 bits of immediate lata)
INT: Interrupt enable flag
$\begin{array}{ll}(~),[\quad]: & \text { Indicates the contents of } \\ \leftarrow: & \text { Transfer direction, result }\end{array}$
\forall : Exclusive or
*: Logical and
^: Logical or
$+: \quad$ Addition
-: \quad Subtraction
-: \quad Taking the one's complement

Instructions

	Mnemonic		Instructio	on code					Af	
-			$\mathrm{D}_{7} \quad \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$		$\begin{aligned} & \text { 을 } \\ & \frac{0}{2} \\ & \hline 0.0 \\ & \hline \end{aligned}$	Op	Description	status bits	Note
	CLA	Clear AC	1000	0 0 0 0 0	1	1	$A C \leftarrow 0$ (Equivalent to LAIO.)	Clear AG.	ZF	1
	DAA	Decimal adjust AC in addition	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{array}$	2	2	$\mathrm{AC} \leftarrow(\mathrm{AC})+6$ (Equivalent to ADI6.)	Add: sixy to AC		
	DAS	Decimal adjust AC in subtraction	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{array}$	2	2	$A C \leftarrow(A C)+10$ (Equivalent to ADIOAH.)	Add 10 to AC .	ZF	
	CLC	Clear CF	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1	1	$\mathrm{CF} \leftarrow 0$	Cleakg tonemest	C\%	
	STC	Set CF	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{CF} \leftarrow 1$	Set CF toxe	CF	
	CMA	Complement AC		1000	1	1	$\mathrm{AC} \leftarrow(\overline{\mathrm{AC}})$	Take the ones compleñint 64AC.	ZF	
	IA	Increment AC	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	00100	1	1	$A C \leftarrow A C)+1$	Increvpent AC.	ZF, CF	
	DA	Decrement AC	0	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	1	1		Decrefinent AC, f	ZF, CF	
	RAR	Rotate AC right through CF	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	0 0 00	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{CF}) \\ & \mathrm{ACn} \leftarrow(\mathrm{AC}, \\ & \mathrm{CF} \leftarrow(\mathrm{AC}), \end{aligned}$	Shift AC (inclifiding CF) right.	CF	
	RAL	Rotate AC left through CF	0 0 000	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1	$\frac{4}{8}$		Shiff AC (including CF) left.	CF, ZF	
	TAE	Transfer AC to E	00100	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	\%	1	$\underline{5}+\mathrm{AC}$	Move the contents of AC to E.		
	TEA	Transfer E to AC	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	${ }^{*} 1$	1	$A C$ (${ }^{\text {a }}$	Move the contents of E to AC.	ZF	
	XAE	Exchange AC with E	0 1-100	$\begin{array}{lll} 0 \quad 1 \quad 0 \end{array}$	1	3	$(A C) \leftrightarrow(E)$	Exchange the contents of $A C$ and E.		
	IM	Increment M	0		8	4	$\text { M(HL) } \leftarrow[\mathrm{M}(\mathrm{Hi})]$	Increment M (HL).	ZF, CF	
	DM	Decrement M	0	$\hat{F}_{0} \quad 1 \quad 0$		$\frac{1}{4}$	$\mathrm{M}(\mathrm{HL}) \mathrm{M}(\mathrm{HL})]$	Decrement M (HL).	ZF, CF	
	IMDR i8	Increment M direct	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & l^{2} \end{array}$	$\begin{array}{ll} 0 & 1 \\ I_{3} & 1_{2} \end{array}$	2	2	$M^{\prime}(i 8) \leftarrow[M(i 8)]+1$	Increment M (i8).	ZF, CF	
	DMDR i8	Decrement M direct	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1_{7} & 1_{6} & 15 & 1_{4} \end{array}$		2	2	$\stackrel{H}{M}(8) \leftarrow[M(i 8)]-1$	Decrement M (i8).	ZF, CF	
	SMB t2	Set M data bit		$y_{1}+{ }^{2}+t_{0}$	$1 \$$	y	$[\mathrm{M}(\mathrm{HL}), \mathrm{t} 2] \leftarrow 1$	Set the bit in M (HL) specified by t 0 and t 1 to 1 .		
	RMB t2	Reset M data bit ${ }^{\text {g }}$	6	$10 t_{1} t_{0}$	1	1	$[\mathrm{M}(\mathrm{HL}), \mathrm{t} 2] \leftarrow 0$	Clear the bit in M(HL) specified by t 0 and t 1 to 0 .	ZF	
	AD	Add M to AC			1	1	$A C \leftarrow(A C)+[M(H L)]$	Add the contents of AC and M (HL) as two's complement values and store the result in AC.	ZF, CF	
	ADDR i8				2	2	$A C \leftarrow(A C)+[M(i 8)]$	Add the contents of AC and M (i8) as two's complement values and store the result in $A C$.	ZF, CF	
	ADC	Add MTOAC wilh CF \square新 ${ }^{4}$,		$\begin{array}{llll} \\ 0 & 0 & 1 & 0\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{HL})] \\ & +(\mathrm{CF}) \end{aligned}$	Add the contents of AC, M (HL) and C as two's complement values and store the result in AC.	ZF, CF	
	ADI i4	Adedionneefate data toAc	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{cccc} 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2	2	$\begin{aligned} & A C \leftarrow(A C)+I_{3}, I_{2}, \\ & I_{1}, I_{0} \end{aligned}$	Add the contents of AC and the immediate data as two's complement values and store the result in AC.	ZF	
	SUBC	Subtract ACfrom M with CF \qquad	0	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{HL})]-(\mathrm{AC}) \\ & -(\mathrm{CF}) \end{aligned}$	Subtract the contents of AC and CF from M (HL) as two's complement values and store the result in AC.	ZF, CF	2
	ANDA	And M with AC then store $A C$	0	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \forall \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical and of AC and $\mathrm{M}(\mathrm{HL})$ and store the result in AC.	ZF	

Note: 1. Has a vertical skip function.
2. CF will be zero if there was a borrow and one otherwise.

Continued from preceding page.

Note: 3. Has a vertical skip function.

Continued from preceding page.

Note 4 ZF is secaccolfg to the resuft of incrementing DP_{L} or DP_{Y}.
4. 5 ZF is sel accordide to the resulfor decrementing $D P_{L}$ or $D P_{Y}$.
${ }^{6}$. ZF is set ace
7. ZF is set according to the rêsult of decrementing $D P_{\mathrm{L}}$ or $D P_{Y}$.

Continued from preceding page.

$\begin{aligned} & \text { 든 } \\ & \text { 른 } \\ & \text { 른 } \\ & \text { 응 } \end{aligned}$	Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
			$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} \quad D_{1} \quad D_{0}$						
	LDZ i4	Load DP_{H} with zero and $D P_{L}$ with immediate data respectively	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}l_{3} & l_{2} & l_{1} & l_{0}\end{array}$	1	1	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{DP}_{\mathrm{L}} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} \end{aligned}$	Load zero virto DP_{H} and them immediaté data i4 into $\mathrm{DP}_{\mathrm{E}} \mathrm{E}$,		
	LHI i4	Load DP_{H} with immediate data	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\mathrm{DP}_{\mathrm{H}} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	Load the immediate data i4 inte DP_{H}		
	LLI i4	Load DP ${ }_{L}$ with immediate data	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$D P_{L} \leftarrow I_{3} I_{2} I_{1} I^{\prime}$	Load the into DP		
	LHLI i8	Load $\mathrm{DP}_{\mathrm{H}}, \mathrm{DP}$ L with immediate data	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} \end{array}$	$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow \mathrm{I}_{7} I_{6} \mathrm{I}_{4} \\ & \mathrm{DP}_{\mathrm{L}} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1}, 4 \end{aligned}$	Load the emmediate data inter $\mathrm{D} 4 \mathrm{H}_{\mathrm{L}} \mathrm{PP}_{\mathrm{L}}$		
	LXYI i8	Load DP ${ }_{X}$, DP $_{Y}$ with immediate data	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} \end{array}$	$\begin{array}{cccc} 0 & 0 & 1 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{DP}_{\mathrm{x}} \neq \mathrm{f}_{2} \mathrm{I}_{5} \\ & \mathrm{DP}_{\mathrm{Y}} \mathrm{l}_{3} \mathrm{I}_{1} \mathrm{l} \end{aligned}$	Loade the immediate dâta into DL_{X}, BP $_{Y}$.		
	IL	Increment DP $_{\text {L }}$	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1	1	$\mathrm{BP} \leftarrow(\mathrm{DP}$	Increment the contents. of DP_{L}	ZF	
	DL	Decrement DP_{L}	0 0 010	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	1	it	$\mathrm{DP}_{\mathrm{L}} \mathrm{~g}_{\mathrm{P}} \mathrm{~S}^{2}$	Decrement ine contents of DP_{E}.	ZF	
	IY	Increment DP $_{Y}$	000001	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	4		$\mathrm{DP}(\mathrm{x}+\mathrm{OP} y)+1$	Increment the contents of DP_{Y}.	ZF	
	DY	Decrement DP ${ }_{Y}$	0	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$		1	$19 P_{y}\left(\mathrm{DP}_{\mathrm{Y}}\right)-1$	Décrement the contents off $D P_{Y}$.	ZF	
	TAH	Transfer AC to DP_{H}	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$	$\begin{array}{lll} 1 & 1 & 1, \\ 0 & 0 & 0 \end{array}$	2	8	$D P_{H} \leftarrow(A C)$	Transfer the contents of AC to DP_{H}.		
	THA	$\begin{aligned} & \text { Transfer } \mathrm{DP}_{\mathrm{H}} \text { to } \\ & \mathrm{AC} \end{aligned}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}$	2	\sum_{2}	$\mathrm{Ne} \leftarrow\left(\mathrm{DP}_{\mathrm{h}}\right)^{\mathrm{A}}$	Transfer the contents of DP_{H}. to AC	ZF	
	XAH	Exchange AC with DP_{H}	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$0,000$		2	$(\mathrm{AC}) \stackrel{\rightharpoonup}{\hookleftarrow}\left(\mathrm{B} \mathrm{P}_{\mathrm{H}}\right)$	Exchange the contents of AC and DP_{H}.		
	TAL	Transfer AC to DP	$\begin{array}{llll} \hline 1 & 1 & 0 & 9 \\ 1 & 1 & 1 & h \end{array}$	$\begin{array}{ll} 1 & 1 \\ 0 & 0 \end{array}$	4	2	$0 \text { (AC) }$	Transfer the contents of AC to DP_{L}.		
	TLA	$\begin{aligned} & \text { Transfer } D P_{L} \text { to } \\ & \text { AC } \end{aligned}$	$\begin{array}{lll} 1 & 1 & \hat{0} \\ 1 & 1 & 1 \end{array}$	$\begin{aligned} & 1 \text { 19 } \\ & 0 \text { 0 } 0 \end{aligned}$	$\sqrt{2}$	26^{4}	$A C \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)$	Transfer the contents of DP_{L} to AC.	ZF	
	XAL	Exchange AC with DPL	$\hat{H}_{0} \vec{F}$			1	$(\mathrm{AC}) \leftrightarrow\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)$	Exchange the contents of AC and DP_{L}.		
	TAX	Transfer AC to DP_{X}	Firr	$\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 50 & 0 & 1 & 0 \end{array}$	2	2	$D \mathrm{P}_{\mathrm{X}} \leftarrow(\mathrm{AC})$	Transfer the contents of AC to DP_{X}.		
	TXA	$\text { Transfer } \mathrm{DP}_{\mathrm{X}}^{\mathrm{t}}$	$\begin{aligned} & 1 \quad 1 \quad 0,0 \\ & 1,1,0 \end{aligned}$	$\begin{array}{llll} 4 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array}$	2	2	$A C \leftarrow\left(D P_{X}\right)$	Transfer the contents of DP_{X} to AC.	ZF	
	XAX	Exchange AO with DP_{X},	${ }^{2}+1,0$	0	1	1	$(\mathrm{AC}) \leftrightarrow\left(\mathrm{DP}_{\mathrm{X}}\right)$	Exchange the contents of AC and DP_{X}.		
	TAY	Transfer AC to DP	$\begin{array}{lll} 1 & 1 & 0 \\ 1 & 1 \end{array}$	$\begin{array}{lll} 1 & y^{3} & 1 \\ 1 & 1 \\ 0, & 1 & 1 \end{array}$	2	2	$D P_{Y} \leftarrow(A C)$	Transfer the contents of AC to DP_{Y}.		
	TYA	AC		$\begin{array}{llll} 1 F^{\prime \prime} & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ \hline \end{array}$	2	2	$A C \leftarrow\left(P^{\prime}\right)$	Transfer the contents of DP_{Y} to AC.	ZF	
	XAY	Exchange AC with DP_{Y} \&	${ }^{0}$	$0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$(\mathrm{AC}) \leftrightarrow\left(\mathrm{DP}_{\mathrm{Y}}\right)$	Exchange the contents of $A C$ and D_{Y}		
	SFBr	Set flag bit	$0^{y^{\prime}} 1 \quad 1$	$\begin{array}{lllll}n_{3} & n_{2} & n_{1} & n_{0}\end{array}$	1	1	$\mathrm{Fn} \leftarrow 1$	Set the flag specified by n4 to 1 .		
	RFB	Reset flag bit:	0	$\begin{array}{lllll}n_{3} & n_{2} & n_{1} & n_{0}\end{array}$	1	1	$\mathrm{Fn} \leftarrow 0$	Clear the flag specified by n 4 to 0 .	ZF	

Continued from preceding page.

	Mnemonic		Instruction code				Operation	Description		Affected status bits	Note
			$D_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$							
	JMP addr	Jump in the current bank	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 1 & 0 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\begin{array}{lll} P_{11} & P_{10} & P_{9} \\ P_{3} & P_{2} & P_{1} \\ P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC} 12 \leftarrow \mathrm{PC} 12 \\ & \mathrm{PC} 11 \text { to } 0 \leftarrow \\ & \mathrm{P}_{11} \text { to } \mathrm{P}_{0} \\ & \hline \end{aligned}$	Jump to tre loc same bahkispe immegilaté data	ation in the cified by the P12.		8
	JPEA	Jump to the address stored at E and $A C$ in the current page	0	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \text { PC12 to PC8 } \leftarrow \\ & \text { PC12 to PC8 } \\ & \text { PC7 to } 4 \leftarrow(\mathrm{E}) \\ & \text { PC3 to } 0 \leftarrow(\mathrm{AC}) \end{aligned}$	Jumip.te the loc determined bes fower 8 bitsiof bö E, AG,	tion eptacting the he PC ${ }^{4}$ *.		
	CAL addr	Call subroutine	$\begin{array}{cccc} 0 & 1 & 0 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 0 & P_{10} & P_{9} & P_{8} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC} 12,11 \leftarrow 0 \\ & \mathrm{PC} 10 \text { to } 0 \leftarrow \\ & \mathrm{P}_{10} \text { to } \mathrm{P} 0 \\ & \mathrm{M} 4 \text { (SP) } \leftarrow(\mathrm{CF} \\ & \mathrm{PC} 12 \text { to } \mathrm{F}) \\ & \mathrm{SP} \leftarrow \mathrm{SR} \mathrm{~S} \end{aligned}$				
	CZP addr	Call subroutine in the zero page	10010	$P_{3} P_{2} P_{1} P_{0}$	1	$\begin{gathered} 2 \\ 4 \end{gathered}$			on page 0		
	BANK	Change bank	0	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	y^{2}			Change the m añ déegister b	ory bank k.		
	PUSH reg	Push reg on M2 (SP)	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$?		Store the conte M2 (SP). Subtra after the store.	nts of reg in act 2 from SP		
	POP reg	Pop reg off M2 (SP)			\square		$\begin{aligned} & S P \leftarrow(S P)+2 \\ & \text { reg } \leftarrow[M 2(S P)] \end{aligned}$	Add 2 to SP and contents of M2 The relation be and reg is the s for the PUSH r	d then load the (SP) into reg. ween $i_{1} i_{0}$ ame as that eg instruction.		
	RT	Return from subroutine		1 䋨0 0		2	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})+4 \\ & \mathrm{PC} \leftarrow[\mathrm{M} 4(\mathrm{SP})] \end{aligned}$	Return from a s interrupt handlin ZF and CF are	ubroutine or ng routine. not restored.		
	RTI	Return from interrupt rautige			1	2	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})+4 \\ & \mathrm{PC} \leftarrow[\mathrm{M} 4(\mathrm{SP})] \\ & \mathrm{CF}, \mathrm{ZF} \leftarrow[\mathrm{M} 4(\mathrm{~S} \end{aligned}$	Return from a s interrupt handling ZF and CF are	ubroutine or ing routine. restored.	ZF, CF	
	BAt2 addr		$\underset{\sim}{1} \quad 1 \quad 0 \quad 1$	$\begin{array}{llll} 0 & \mathrm{t}_{1} \mathrm{t}_{0} \\ \mathrm{P}_{3} & \mathrm{P}_{1} \mathrm{P}_{0} \end{array}$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow P_{7} P^{\prime} \\ & P_{4} P \\ & P_{1} P \\ & \text { if }(A C \\ &=1 \end{aligned}$	Branch to the loc same page spe P_{7} if the bit in A by the immedia is one.	ocation in the cified by P_{0} to AC specified te data $\mathrm{t}_{1} \mathrm{t}_{0}$		
	MNAt 2 addir	Brankh onfouAC bit.	$\begin{gathered} 1 \quad 0<{ }^{1} \\ \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \end{gathered}$	$\begin{array}{cccc} 0 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC} 7 \text { to } 0 \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \\ & \mathrm{P}_{4} \mathrm{P} \\ & \mathrm{P}_{1} \mathrm{P} \\ & \text { if }(\mathrm{AC} \\ &=0 \end{aligned}$	Branch to the lo same page spe P7 if the bit in A by the immedia is zero.	cation in the cified by P_{0} to AC specified te data $\mathrm{t}_{1} \mathrm{t}_{0}$		
	BMitz addr		$\begin{array}{llll} 1 & 1 & 0 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{array}{r} \mathrm{PC} 7 \text { to } 0 \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \\ \mathrm{P}_{4} \mathrm{P}_{3} \\ \mathrm{P}_{1} \mathrm{P}_{8} \\ \text { if }[\mathrm{M} \\ \text { t2] }= \end{array}$	Branch to the lo same page spe P_{7} if the bit in M by the immedia is one.	cation in the cified by P_{0} to (HL) specified te data $\mathrm{t}_{1} \mathrm{t}_{0}$		
	$\begin{aligned} & \text { BNMt2 } \\ & \text { addr } \end{aligned}$	Branch on no M bit	$\begin{array}{cccc} 1 & 0 & 0 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{array}{r} \text { PC7 to } 0 \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \\ \mathrm{P}_{4} \mathrm{P}_{3} \\ \mathrm{P}_{1} \mathrm{P}_{6} \\ \text { if }[\mathrm{M} \\ \text { t2] }= \end{array}$	Branch to the lo same page spe P_{7} if the bit in M by the immedia is zero.	cation in the cified by P_{0} to (HL) specified te data $\mathrm{t}_{1} \mathrm{t}_{0}$		

Note: 8. This becomes PC12 + (PC12) immediately following a BANK instruction.

Continued from preceding page.

	Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
			$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
	BPt2 addr	Branch on port bit	$\begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}$	$\begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} \text { PC7 to } 0 \leftarrow & P_{7} P_{6} P_{5} \\ & P_{4} P_{3} P_{2} \\ & P_{1} P_{0} \\ & \text { if }[P \\ & \left.\left(D P_{L}\right), \text { t2 }\right] \\ & =1 \end{aligned}$	Branch to the location in the same page specified by $\mathrm{P}_{0} t \mathrm{t}$ P_{7} if the bit in poit $\left(\mathrm{DP}_{\mathrm{L}}\right)$ specified by thelamediate data $t_{1} t_{0}$ is one.		9
	BNPt2 addr	Branch on no port bit	$\begin{array}{cccc} 1 & 0 & 0 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{array}{rl} \mathrm{PC} 7 \text { to } 0 & \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{6} \\ \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{7} \\ \mathrm{P}_{1} \mathrm{P}_{0} \\ \mathrm{if} & \mathrm{P} \\ \left.\left(\mathrm{P}_{\mathrm{L}}\right), \mathrm{t} 2\right] \\ & \mathrm{Fin}^{2} \end{array}$	Branch totithe location in the same page specified by P_{0} ted P_{7} if the bit in p pit $1\left(D P_{L}\right)$ specified withe immediate 		9
	BC addr	Branch on CF	$\begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}$	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2		Branchato the location in the Sane page specifiêd by P_{0} to $P_{7}+$ 隹CF is one.		
	BNC addr	Branch on no CF	$\begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}$	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2			Brancli to the location in the same păge specified by P_{0} to $\mathrm{P}_{7} \mathrm{fi}_{5} \mathrm{CF}$ is zero.		
	BZ addr	Branch on ZF	$\begin{array}{cccc} 1 & 1 & 0 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{ccc} 1 & 1 & 0 \\ \mathrm{P}_{3} & \mathrm{P}_{2} & \mathrm{P}_{3} \end{array}$	A			Branch to the location in the same page specified by P_{0} to P_{7} if $Z F$ is one.		
	BNZ addr	Branch on no ZF	$\begin{array}{cccc} 1 & 0 & 0 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$			$\begin{gathered} 4 \\ 8 \end{gathered}$	PC7 to $0, P_{7} \mathrm{P}_{6} \mathrm{P}_{5}$ $f^{2} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2}$ $\mathrm{P}_{1} \mathrm{P}_{0}$ if (ZF) $=0$	Branch to the location in the same page specified by P_{0} to P_{7} if $Z F$ is zero.		
	BFn4 addr	Branch on flag bit	$\begin{array}{ccc} 1 & 1 & 1 \\ \mathrm{P}_{7} P_{6} \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\operatorname{Hog}_{3} \text { fore }$ $P_{3} q_{2} p_{1} p_{0}$			$\begin{aligned} \mathrm{P}_{\mathrm{C}} 7 \text { to } 0 & \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \\ & P_{4} \mathrm{P}_{3} \mathrm{P}_{2} \\ & P_{1} P_{0} \\ & \text { if }(\mathrm{Fn}) \\ & =1 \end{aligned}$	Branch to the location in the same page specified by P_{0} to P_{7} if the flag (of the 16 user flags) specified by $n_{3} n_{2} n_{1} n_{0}$ is one.		
	$\begin{aligned} & \text { BNFn4 } \\ & \text { addr } \end{aligned}$	Branch on no flag bit	$\begin{aligned} & h^{i} \\ & 1 \\ & 1 \end{aligned}$	$\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	F2	2	$\begin{aligned} \text { PC7 to } 0 & \leftarrow P_{7} P_{6} P_{5} \\ & P_{4} P_{3} P_{2} \\ & P_{1} P_{0} \\ & \text { if }(F n) \\ & =0 \end{aligned}$	Branch to the location in the same page specified by P_{0} to P_{7} if the flag (of the 16 user flags) specified by $n_{3} n_{2} n_{1}$ n_{0} is zero.		
	IP0	Input poirt 0 to AC	$0 \quad 1,10$	$0,00$	1	1	$A C \leftarrow(P 0)$	Input the contents of port 0 to AC.	ZF	
	IP	Input port to $A \in$	$\cos ^{2} \mathrm{p}^{3}$	$\text { in } 110$	1	1	$\mathrm{AC} \leftarrow\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)\right]$	Input the contents of port $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$ to AC .	ZF	
	IPM	Input port to M	Frall	$\begin{array}{llll} 1 & 0 & 0 & 1 \end{array}$	1	1	$\mathrm{M}(\mathrm{HL}) \leftarrow\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)\right]$	Input the contents of port $P\left(\mathrm{DP}_{\mathrm{L}}\right)$ to $\mathrm{M}(\mathrm{HL})$.		
	IPDBi4	Input port to AG direct	1 1 0 0 1 0 0	$\begin{array}{cccc} 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$A C \leftarrow[P(i 4)]$	Input the contents of P (i4) to AC.	ZF	
		Inpulthort, 4, 5 to E, Aprespectively	$\begin{array}{lll} 1 & y_{1} & 0 \end{array} 0$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}$	2	2	$\begin{aligned} & E \leftarrow[P(4)] \\ & A C \leftarrow[P(5)] \end{aligned}$	Input the contents of ports $P(4)$ and $P(5)$ to E and $A C$ respectively.		
		OupuliAC to pofft	$\%^{0}$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1	1	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right) \leftarrow(\mathrm{AC})$	Output the contents of AC to port P (DPL).		
	OPM	Output M ter port	0	10010	1	1	$\mathrm{P}\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right) \leftarrow[\mathrm{M}(\mathrm{HL})]$	Output the contents of $\mathrm{M}(\mathrm{HL})$ to port P (DPL).		
	OPDR i4	Oưput AC to port direct	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{array}$	$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0} \\ \hline \end{array}$	2	2	$\mathrm{P}(\mathrm{i} 4) \leftarrow(\mathrm{AC})$	Output the contents of AC to P (i4).		
	OP45	Output E, AC to port 4, 5 respectively	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}$	2	2	$\begin{aligned} & P(4) \leftarrow(E) \\ & P(5) \leftarrow(A C) \end{aligned}$	Output the contents of E and $A C$ to ports $P(4)$ and $P(5)$ respectively.		

Note: 9. Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.

Continued from preceding page．

$\begin{aligned} & \text { 듬 } \\ & \text { 은 } \\ & \text { 릉 } \\ & \text { 등 } \end{aligned}$	Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
			$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} \quad D_{2} \quad D_{1} \quad D_{0}$						
	SPB t2	Set port bit	0 0 000	$1 \begin{array}{llll}1 & 0 & t_{1} & t_{0}\end{array}$	1	1	$\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right), \mathrm{t} 2\right] \leftarrow 1$	Set to one the bit in port $\mathrm{P}\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)$ specified by the immedfate data t 朝		
	RPB t2	Reset port bit	0	$1 \begin{array}{llll}1 & 0 & t_{1} & t_{0}\end{array}$	1	1	$\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right), \mathrm{t} 2\right] \leftarrow 0$	Clear to zero the bit in port P（DPL）specilled by the immediate data $t_{1} t_{0}$ ．		
	ANDPDR i4，p4	And port with immediate data then output	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \mathrm{P}\left(\mathrm{P}_{3} \text { to } \mathrm{P}_{0}\right) \leftarrow \\ & {\left[\mathrm{P}\left(\mathrm{P}_{3} \text { to } 0\right)\right] \vee \text {, }} \end{aligned}$	Take thetegical anda of $P\left(\mathrm{P}_{3}\right.$ to P_{0} ）and the immediate result to P Pans to P_{0} ）．	2	
	ORPDR i4，p4	Or port with immediate data then output	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	$\begin{array}{cccc} 0 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{P}\left(\mathrm{P}_{3} \text { to } \mathrm{P}_{0}\right) * \\ & {\left[\mathrm{P}\left(\mathrm{P}_{3} \text { to } 0\right)\right] \vee \mathrm{I}_{3} \text { te }} \end{aligned}$	Take the logizal or of R（ P / z to Pow and thefmmediafe data $\mathrm{I}_{3} \mathrm{I}_{2}$ 㾞 0 and outpuit the result： P P（ P_{3} to $\mathrm{P} \mathrm{P}_{6}$ ）．	ZF	
	WTTM0	Write timer 0	1100	10010	1	2		Write the contents of $\mathrm{M} 2(\mathrm{HL})$ ， AC into the timer 0 reload Ogister		
	WTTM1	Write timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}$	2	2^{7}		Write the contents of E，AC into the timer 1 reload registề A ．		
	RTIMO	Read timer 0	1100			2	M2（ H 盷， $\mathrm{AC} \leftarrow$ （THABRO）	Readd out the contents of the tifner 0 counter into M2（HL）， AC．		
	RTIM1	Read timer1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & y^{\text {a }}\end{array}$		2	$\text { F. } A C \leftarrow(T I M E R)^{\circ}$	Read out the contents of the timer 1 counter into E，AC．		
	STARTO	Start timer 0	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{lll} 1 & 1 \\ 0 & 1 & 1 \end{array}$	2	4	Start timero counter	Start the timer 0 counter．		
	START1	Start timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{lll} \hat{N}^{n} & 1 & 1 \\ 0 \end{array}$	5	2	Start tímer 1 counter	Start the timer 1 counter．		
	STOP1	Stop timer 0	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{ll} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 4 \end{array}$	3	2	Stop timer 0 counter	Stop the timer 0 counter．		
	STOP1	Stop timer 1	$\begin{array}{lll} 1 & 1 & 0 \\ 1 & 1 & i \end{array}$		${ }_{2}$	2^{i}	Stop timer 1 counter	Stop the timer 1 counter．		
	MSET	Set interrupt master enable flag	$\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 0,4 \\ 0 \end{array}$			2	MSE $\leftarrow 1$	Set the interrupt master enable flag to one．		
	MRESET	Reset interrupt master enable flaǵ	$\left.\begin{array}{lllllll} \text { F } & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right)$			2	MSE $\leftarrow 0$	Clear the interrupt master enable flag to zero．		
	EIH i4	Enable interrupt high	1 1 $0, \sum_{0}$ 1 1 0 0 1 1			2	EDIH $\leftarrow($ EDIH $) \vee$ i4	Set the interrupt enable flag to one．		
	EIL i4	Enable interrüpt low	$\begin{array}{lllll} 1+1 / 0.0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{array}$		2	2	EDIL $\leftarrow($ EDIL）$\vee i 4$	Set the interrupt enable flag to one．		
	DIH i4	Disablednterrupt high \qquad	$\begin{array}{llll} 1 & 1 & 0 \\ & 0 & 0 \\ & 0 & 0 \end{array}$	$\begin{array}{ccc} 1 & y_{1} & 0 \\ H_{3} & 1 \\ i_{2} & 1_{1} & l_{0} \end{array}$	2	2	EDIH $\leftarrow($ EDIL $) \wedge \overline{\mathrm{i}}$	Clear the interrupt enable flag to zero．	ZF	
	DIL i4	Disăble interhupt low	$\begin{array}{lllllll} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & l_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} \\ \mathrm{I}_{0} \end{array}$		2	2	EDIL $\leftarrow($ EDIL $) \wedge \overline{\mathrm{i}}$	Clear the interrupt enable flag to zero．	ZF	
	$\mathrm{WTSP}_{F} \mathrm{~F}^{\text {f }}$	Write SP	$\begin{array}{rrr} 3 & 1 & 0 \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ \hline \end{array}$	2	2	$\mathrm{SP} \leftarrow(\mathrm{E}),(\mathrm{AC})$	Transfer the contents of E， AC to SP．		
		Read ${ }^{5} P$	$\begin{array}{lll} 1 \\ 1, f & 0 & 0 \\ 1 \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ \hline \end{array}$	2	2	$\mathrm{E}, \mathrm{AC} \leftarrow(\mathrm{SP})$	Transfer the contents of SP to E，AC．		
	$L T$		$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 1 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{array}$	2	2	HALT	Enter halt mode．		
	HOLD	HOLD	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	2	2	HOLD	Enter HOLD mode．		

Continued from preceding page.

Specifications of any aind all SANYOproducts described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performafice, characteristic products or equipiment. To verify symptomaid states that cannot be evaluated in an independent device, the customer sfiould alwiys evalyate and fest devices mounted in the customer's products or equipment.
SANYO Electric Cowistd. Strives to supply high-quality high-reliability products. However, any and all semicofidector products tail with some probability. It is possible that these probabilistic failures could give fise to accidents or ovents that could endanger human lives, that could give rise to smoke or fire, or that could gatise damage to other property. When designing equipment, adopt safety measures so that these kinids of accidents or events cannot occur. Such measures include but are not limited to protective circiuts and erfor prevention circuits for safe design, redundant design, and structural design.
fin the eventit
entithat any or all SANYO products (including technical data, services) described or contained herein ate contiolled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the atovelaw
No partef this publiciation may be reproduced or transmitted in any form or by any means, electronic or meehanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, Without the prior written permission of SANYO Electric Co., Ltd.
Any and afifinformation described or contained herein are subject to change without notice due to productlechinology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1998. Specifications and information herein are subject to change without notice.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

