

## Four-bit Single-Chip Microcontrollers On-Chip 4 K/6 K/8 K-byte ROM

#### Overview

The LC66354B, LC66356B and LC66358B are 42-pin package four-bit CMOS microcontrollers that integrate on a single chip all functions required in a control microcontroller, including ROM, RAM, I/O ports, serial interfaces, comparator inputs, three-value inputs, timers and an interrupt system. These products differ from the earlier LC66358A series in their power supply voltage range and operating speed specifications.

## **Features and Functions**

- ROM (with 4 K-, 6 K- and 8 K-byte capacities) and RAM (512 4-bit digits) on chip
- LC66000 series compatible instruction set (128 instructions)
- A total of 36 I/O port pins
- Two eight-bit serial interfaces that can be connected in cascade to form a 16-bit interface
- Instruction cycle time: 0.92 to 10 µs (3 to 5.5 V)
  The earlier LC66358A series had instruction cycle times of from 1.96 to 10 µs (at 3 to 5.5 V) and from 3.92 to 10 µs (at 2.2 to 5.5 V).
- Powerful timer and prescaler functions.

Time limit timer, event counter, pulse width measurement and square wave output using a 12-bit timer.

Time limit timer, event counter, PWM output and square wave output using an 8-bit timer.

Time base function using a 12-bit prescaler.

Powerful interrupt system with eight interrupts and eight vector locations

External interrupts: three interrupts and three vector locations

Internal interrupts: five interrupts and five vector locations

- Flexible I/O functions
   Comparator inputs, three-value inputs, 20 mA drive
   outputs, 15 V withstand voltage, pull-up or open-drain
   option switching
- Runaway detection function (watchdog timer) option
- Eight-bit I/O function
- Power reduction functions using halt and hold modes
- Packagés: DIP42S, QIP48E (QFP48E)
- Eyaldation LSI: used together
  - LC66599 (evaluation chip) + EVA850/800-TB6630X
  - LC66E308 (on-chip EPROM microcontroller)

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

#### **Series Structure**

| Product name            | Pins   | ROM capacity            | RAM capacity | Package                         | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|--------|-------------------------|--------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LC66304A/306A/308A      | 42, 48 | 4 K/6 K/8 K bytes       | 512 W        | DIP42S QFP48E                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LC66404A/406A/408A      | 42, 48 | 4 K/6 K/8 K bytes       | 512 W        | DIP42S QFP48E                   | Thormal version<br>4.0 to 6.0 V/0.92 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LC66506B/508B/512B/516B | 64     | 6 K/8 K/12 K/16 K bytes | 512 W        | DIP64S QFP64A                   | - 4.0 1.0 0.0 470.02 μ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LC66354A/356A/358A      | 42, 48 | 4 K/6 K/8 K bytes       | 512 W        | DIP42S QFP48E                   | All Control of the Co |
| LC66354S/356S/358S*     | 44     | 4 K/6 K/8 K bytes       | 512 W        | QFP44M                          | Low-voltage version 2.2 to 5.5 V/3.92 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LC66556A/558A/562A/566A | 64     | 6 K/8 K/12 K/16 K bytes | 512 W        | DIP64S QFP64F                   | 2.10 0.0 470.02 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC66354B/356B/358B      | 42, 48 | 4 K/6 K/8 K bytes       | 512 W        | DIP42S QFP48E                   | Low-voltage, high-speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LC66556B/558B*          | 64     | 6 K/8 K bytes           | 512 W        | DIP64S QFP64E                   | version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LC66562B/566B           | 64     | 12 K/16 K bytes         | 512 W        | DIP64S ØFP64E                   | 3.0 to 5.5 V/0.92 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LC66E308                | 42, 48 | EPROM, 8 K bytes        | 512 W        | DIC42S (window)  QFC48 (window) | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LC66P308                | 42, 48 | OTPROM, 8 K bytes       | 512 W        | DIP42S QFP48E                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LC66E408                | 42, 48 | EPROM, 8 K bytes        | 512 W        | DIC42S (window) QFC48 (window)  | Evaluation window and OTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LC66P408                | 42, 48 | OTPROM, 8 K bytes       | 512 W        | DIP42S QFP48E                   | → versions  √ 4,5 to 5.5 V/0.92 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LC66E516                | 64     | EPROM 16 K bytes        | 512 W        | DIC64S (window) QFC64 (window)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LC66P516                | 64     | OTPROM 16 K bytes       | 512 W        | DIP64S QFP64E                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Note: \* Under development

### **Pin Assignments**



We recommend using reflow soldering methods to mount the QFP package version.

Contact your Sanyo sales representative to discuss process conditions if techniques in which the whole package is immersed in a solder bath (solder dip or spray techniques) are used.

#### **System Block Diagram**



## Differences between the LC66354B, LC66356B and LC66358B and the LC6630X Series

| Parameter                                                                                                   | LC6630X series<br>(including the LC66599 evaluation chip)                                                | LC6635XB series                                                                                   |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| System Differences  • Hardware wait time (number of cycles) when HOLD mode is cleared                       | 65536 cycles<br>At 4 MHz (Tcyc = 1 µs): About 64 ms                                                      | 16384 cycles<br>At 4 MHz (Tcyc = 1 μs): About 16 ms                                               |
| Value of timer 0 on reset<br>(including the value after HOLD mode is cleared)                               | The value FFO is loaded.                                                                                 | The value FFC is loaded.                                                                          |
| Main differences in product characteristics.  • Operating power supply voltage/operating speed (cycle time) | LC66304A, 66306A, 66308A<br>4.0 to 6.0 V/0.92 to 10 μs<br>LC66E308, 66P308<br>4.5 to 5.5 V/0,92 to 10 μs | 3.0 to 5.5 V/0.92 to 10 μs<br>LC6635XA, 2.2 to 5.5 V/3.92 to 10 μs,<br>3.0 to 5.5 V/1.96 to 10 μs |

- Note: 1. An RC oscillator cannot be used with the LC66354B, LC66356B and LC66358B.

  2. In addition, there are differences in the output currents, comparator input voltages and other aspects. For details, refer to the individual catalogs for the LC66308A, LC66E308 and the LC66P308.
  - 3. These points require care when using the LC66E308 or LC66P308 for evaluation purposes.

## Package Dimensions

unit: mm

#### 3025B-DIP42S



unit: mm 3156-QFP48E



SANYO: QFP48E

## **Pin Function Overview**

| Pin                                        | I/O | Overview                                                                                                                                                                                                                                                                                                                                                                                                              | Output drive type                                                                                     | Option                                                                 | Value on reset              |
|--------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|
| P00<br>P01<br>P02<br>P03                   | I/O | I/O ports P00 to P03 Input or output in 4-bit or 1-bit units P00 to P03 have control functions in HALT mode.                                                                                                                                                                                                                                                                                                          | P-channel: pull-up MOS type N-channel: intermediate sink current type                                 | Either with pull-up MQS or n-channel OD output     Reset output level  | High or low level (option)  |
| P10<br>P11<br>P12<br>P13                   | I/O | I/O ports P10 to P13 • Input or output in 4-bit or 1-bit units                                                                                                                                                                                                                                                                                                                                                        | P-channel: pull-up MOS type N-channel: intermediate sink current type                                 | Either with pull-up MOS or n-channel OD output     Reset output level. | High or low, level (option) |
| P20/SI0<br>P21/SO0<br>P22/SCK0<br>P23/INT0 | I/O | I/O ports P20 to P23  Input or output in 4-bit or 1-bit units P20 is also used as the serial input S10 pin. P21 is also used as the serial output S00 pin. P22 is also used as the serial clock SCK0 pin. P23 is also used as the INT0 interrupt request, the timer 0 event counter and pulse width measurement input.                                                                                                | P-channel: CMOS type N-channel: intermediate sink current type (+15 V withstand voltage in OD)        | Either CMQS or n-channel     OD output                                 | H                           |
| P30/ĪNT1<br>P31/POUT0<br>P32/POUT1         | I/O | I/O ports P30 to P32  Input or output in 3-bit or 1-bit units P30 is also used as the INT1 interrupt request. P31 is also used for square wave output from timer 0. P32 is also used for square wave output from timer 1 and PWM output.                                                                                                                                                                              | P-channel: OMOS type N-channel intermediate sink ourrent type (+15 V) withstand voltage in QD).       | Either CMOS or n-channel OD output                                     | Н                           |
| P33/HOLD                                   |     | Hold mode control input  Hold mode is entered if a HOLD instruction is executed when HOLD is low.  When in hold mode, the CPU is reactivated by setting HOLD to the high level.  P33 can also be used as an input port along with P30 to P32.  When P33/HOLD is low, the CPU will not be reset by a low level on RES. Therefore RES cannot be used in applications that set P33/HOLD low when power is first applied. |                                                                                                       |                                                                        |                             |
| P40<br>P41<br>P42<br>P43                   | JO  | I/O ports P40 to P43  Input or output in 3-bit or 1-bit units  I/O in 8-bit units when used in conjunction with P50 to P53  Output of 8-bit ROM data when used in conjunction with P50 to P53                                                                                                                                                                                                                         | P-channel: pull-up MOS type N-channel: intermediate sink current type (+15 V withstand voltage in OD) | Either with pull-up MOS<br>or n-channel OD output                      | Н                           |

#### Continued from preceding page.

| Pin                                          | I/O | Overview                                                                                                                                                                                                                                                                                            | Output drive type                                                                                     | Option                                                                | Value on reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P50<br>P51<br>P52<br>P53/INT2                | I/O | <ul> <li>I/O ports P50 to P53</li> <li>Input or output in 4-bit or 1-bit units</li> <li>I/O in 8-bit units when used in conjunction with P40 to P43</li> <li>Output of 8-bit ROM data when used in conjunction with P40 to P43</li> <li>P53 is also used for the INT2 interrupt request.</li> </ul> | P-channel: pull-up MOS type N-channel: intermediate sink current type (+15 V withstand voltage in OD) | Either with pull-up MOS or n-channel OB output                        | THE STATE OF THE S |
| P60/SI1<br>P61/SO1<br>P62/SCK1<br>P63/PIN1   | 1/0 | I/O ports P60 to P63  Input or output in 4-bit or 1-bit units P60 is also used as the serial input S11 pin. P61 is also used as the serial output SO1 pin. P62 is also used as the serial clock SCK1 pin. P63 is also used as the timer 1 event counter input.                                      | P-channel: CMOS type N-channel: intermediatesink current type (+15/V) withstand voltage in OD)        | Either CMOS or a channel OD/output                                    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PC2/VREF0<br>PC3/VREF1                       | I/O | I/O ports PC2 and PC3 Output in 4-bit or 1-bit units PC2 is also used as the VREF0 comparator comparison voltage pin. PC3 is also used as the VREF1 comparator comparison voltage pinger.                                                                                                           | P-channel: CMOS type N-channel: intermediate sink current type                                        | Either CMOS or n-channel Op output                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PD0/CMP0<br>PD1/CMP1<br>PD2/CMP2<br>PD3/CMP3 | ı   | Dedicated input ports PD0 to PD3:  Can be switched to use as comparator inputs under program control.  The PD0 comparison voltage is VREF0.  The PD1 to PD3 comparison voltage is VREF1.  Comparisons can be specified in units of PD0 PD2, and PD2 and PD3 together.                               |                                                                                                       |                                                                       | Normal input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PE0/TRA<br>PE1/TRB                           | I   | Dedicated input ports  • Can be switched to function as three- value inputs under program control.                                                                                                                                                                                                  |                                                                                                       |                                                                       | Normal input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OSC1<br>OSC2                                 | - O | System clock oscillator external connection When an external clock is used, leave OSC2 open and input the clock signal to OSC4.                                                                                                                                                                     |                                                                                                       | Selection of either<br>ceramic oscillator or<br>external clock input. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RES                                          |     | System reset input The GPU is initialized if a low level is input to RES when the P33/HOLD pin is high.                                                                                                                                                                                             |                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>DD</sub> V <sub>SS</sub>              | No. | CPU test pin  This pin must be connected to V <sub>SS</sub> during formal operation.  Power supply connections                                                                                                                                                                                      |                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . 22                                         |     |                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Note: Pull-up MOS output:......A pull-up MOS transistor is connected to the output circuit.

CMOS output:......Complementary output

OD output:.....Open drain output

#### **User Option Types**

1. Port 0 and 1 reset time output level option

The output levels of ports 0 and 1 can be selected from the following two options in 4-bit upits.

| Option                          | Conditions and notes           |
|---------------------------------|--------------------------------|
| High level output at reset time | Ports 0 and/or 1 in 4-bit sets |
| Low level output at reset time  | Ports 0 and/or 1 in 4-bit sets |

#### 2. Oscillator circuit option

| Option             | Circuit                                 | Conditions and notes                         |
|--------------------|-----------------------------------------|----------------------------------------------|
| External clock     | OSC1 Z                                  | This input is a Schmitt specification input. |
| Ceramic oscillator | C1 OSC1 Ceramic resonator OSC2  A0 1807 |                                              |

Note: There is no RC oscillator option.

#### 3. Watchdog timer option

The presence or absence of a watchdog finer can be selected as an option.

#### 4. Port output type option

• One of the following two output circuit options can be selected for each bit in ports P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5. P6 and PC.



• The PD comparator inputs and the PE three-value inputs are selected in software.

## **Specifications**

## Absolute Maximum Ratings at $Ta = 25^{\circ}C$ , $V_{SS} = 0$ V

| Parameter                        | Symbol               | Applicable pins, notes                                          | Conditions | Ratings                        | Unit | Note |
|----------------------------------|----------------------|-----------------------------------------------------------------|------------|--------------------------------|------|------|
| Maximum supply voltage           | V <sub>DD</sub> max  | V <sub>DD</sub>                                                 | grade.     | 0,3 to +7.0                    | V    |      |
| Innut voltogo                    | V <sub>IN</sub> (1)  | P2, P3 (except for the P33/HOLD pin), P4, P5, P6                | 18 /       | -0.3 to +15.0                  | V    | 1    |
| Input voltage                    | V <sub>IN</sub> (2)  | Other inputs                                                    | and god    | -0:3 to V <sub>DD</sub> + 0.3° | V. V | 2    |
| Output valtage                   | V <sub>OUT</sub> (1) | P2, P3 (except for the P33/HOLD pin), P4, P5, P6                | And Mark   | 0.3 to +15.0°                  | V.   | 1    |
| Output voltage                   | V <sub>OUT</sub> (2) | Other outputs                                                   | 11         | –0.3 to ¥ <sub>DD</sub> + 0.3  | V    | 2    |
|                                  | I <sub>ON</sub>      | P0, P1, P2, P3 (except for the P33/HOLD pin),<br>P4, P5, P6, PC |            | 20                             | mΑ   | 3    |
| Output current per pin           | -I <sub>OP</sub> (1) | P0, P1, P4, P5                                                  | 49, 4      | . 2                            | mA   | 4    |
|                                  | -I <sub>OP</sub> (2) | P2, P3 (except for the P33/HOLD pin), P6, PC                    |            | A 4                            | mA   | 4    |
|                                  | ΣI <sub>ON</sub> (1) | P0, P1, P2, P3, (except for the P33/HOLD pin), P40, P41         | 72         | <i>f</i> 75                    | mA   | 3    |
| Total nin ausrant                | ΣI <sub>ON</sub> (2) | P5, P6, P42, P43, PC                                            |            | // 75                          | mA   | 3    |
| Total pin current                | Σl <sub>OP</sub> (1) | P0, P1, P2, P3 (except for the P33/HOLD pin), P40, P41          |            | <i>j.</i> 25                   | mA   | 4    |
|                                  | Σl <sub>OP</sub> (2) | P5, P6, P42, P43, PC                                            |            | 25                             | mA   | 4    |
| Allania la la como dispisa di co | Dd                   | T- 20 t- :7000                                                  | DIP42S     | 600                            | mW   |      |
| Allowable power dissipation      | Pd max               | Ta = −30 to +70°C                                               | QFP48E     | 430                            | mW   | 5    |
| Operating temperature            | Topr                 |                                                                 | 11         | -30 to +70                     | °C   |      |
| Storage temperature              | Tstg                 |                                                                 | 11         | -55 to +125                    | ç    |      |

- Note: 1. Applies to open drain output specification pins. The rating from the "other pin" entry applies for specifications other than the open drain output specification.
  - 2. Levels up to the free-running oscillation level are allowed for the oscillator input and output pins.
  - 3. Inflow current
  - 4. Outflow current (Applies to the pull-up output specification and CMQS output specification pins.)
  - We recommend using reflow soldering methods to mount the QFP package version.
     Contact your Sanyo sales representative to discuss process conditions if techniques in which the whole package is immersed in a solder bath (solder dip or spray techniques) are used.

# Allowable Operating Ranges at $Ta = 30 \text{ to} + 70^{\circ}\text{C}$ , $V_{SS} = 0 \text{ V}$ , $V_{DD} = 3.0 \text{ to } 5.5 \text{ V}$ unless otherwise specified

| D                          | O:ll                  |                                                               | 2//                                      |                      | Ratings |                       | 1.1  | Note |
|----------------------------|-----------------------|---------------------------------------------------------------|------------------------------------------|----------------------|---------|-----------------------|------|------|
| Parameter                  | Symbol                | Applicable pins                                               | Conditions                               | min                  | typ     | max                   | Unit | note |
| Operating supply voltage   | V <sub>DD</sub>       | V <sub>DD</sub>                                               | 0.92 ≤ Tcyc ≤ 10 μs                      | 3.0                  |         | 5.5                   | V    |      |
| Memory hold supply voltage | V <sub>DD.</sub> (Ħ)  | V <sub>DD</sub>                                               | In HOLD mode                             | 1.8                  |         | 5.5                   | ٧    |      |
|                            | У <sub>Щ</sub> (1)    | P2 P3 (except for<br>the P33/HOLD pin),<br>P4, P5, P6         | With the output n-channel transistor off | 0.8 V <sub>DD</sub>  |         | 13.5                  | ٧    | 1    |
| Input high level Voltage   | V <sub>IH</sub> (2)   | P33/HOLD, RES, OSC1                                           | With the output n-channel transistor off | 0.8 V <sub>DD</sub>  |         | V <sub>DD</sub>       | ٧    | 2    |
|                            | V <sub>NH</sub> (3)   | P0, ₱1, PC, ₱D, PE                                            | With the output n-channel transistor off | 0.75 V <sub>DD</sub> |         | V <sub>DD</sub>       | >    | 3    |
|                            | V <sub>IH</sub> (4)   | <b>₽</b> E                                                    | Using three-value input                  | 0.8 V <sub>DD</sub>  |         | $V_{DD}$              | ٧    |      |
| Middle level input voltage | V <sub>IM</sub>       | PE /                                                          | Using three-value input                  | 0.4 V <sub>DD</sub>  |         | 0.6 V <sub>DD</sub>   | V    |      |
| Common mode input          | V <sub>CMM</sub> (1)  | PDØ, PC2                                                      | Using comparator input                   | 1.5                  |         | $V_{DD}$              | V    |      |
| voltage range              | V <sub>CMM</sub> (2)  | PD1, PD2, PD3, PC3                                            | Osing comparator input                   | $V_{SS}$             |         | V <sub>DD</sub> – 1.5 | V    |      |
|                            | V <sub>IL</sub> (1)   | PŽ, P3 (except for<br>the P33/HOLD pin),<br>P5, P6, RES, OSC1 | With the output n-channel transistor off |                      |         | 0.2 V <sub>DD</sub>   | V    | 1    |
| Input low level voltage    | V <sub>IE</sub> (2)   | P33/HOLD                                                      | V <sub>DD</sub> = 1.8 to 5.5 V           |                      |         | 0.2 V <sub>DD</sub>   | ٧    |      |
|                            | V <sub>I</sub> L (3)  | P0, P1, P4, PC, PD, PE,<br>TEST                               | With the output n-channel transistor off | V <sub>SS</sub>      |         | 0.25 V <sub>DD</sub>  | >    | 3    |
|                            | / V <sub>IL</sub> (4) | PE                                                            | Using comparator input                   | V <sub>SS</sub>      |         | 0.2 V <sub>DD</sub>   | ٧    |      |
| Operating frequency        | f <sub>OP</sub>       |                                                               | _                                        | 0.4                  |         | 4.35                  | MHz  |      |
| (instruction cycle time)   | (T <sub>CYC</sub> )   |                                                               |                                          | (10)                 |         | (0.92)                | (µs) |      |

- Note: 1. Applies to open drain specification pins. However, the rating for V<sub>IH</sub> (2) applies to the P33/HOLD pin. Ports P2, P3 and P6 cannot be used as input pins when CMOS output specifications are used.
  - 2. Applies to open drain specification pins.
  - 3. When PE is used as a three-value input, V<sub>IH</sub> (4), V<sub>IM</sub> and V<sub>IL</sub> (4) apply. Port P3 cannot be used as input pins when CMOS output specifications are used.

#### Continued from preceding page.

| Para                            | Parameter       |                                          | Applicable pins  | Conditions                                                                                                                             | Ratings |     |      | Unit  | Note  |
|---------------------------------|-----------------|------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-----|------|-------|-------|
| Faia                            | imetei          | Symbol                                   | Applicable pills | Conditions                                                                                                                             | min     | typ | max  | Offic | INOLE |
|                                 | Frequency       | f <sub>ext</sub>                         |                  | See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option)  | 0.4     |     | 4.35 | MHz   |       |
| External clock input conditions | Pulse width     | t <sub>ext</sub> H<br>t <sub>ext</sub> L | OSC1             | See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option)  | 100     |     |      | ns    |       |
|                                 | Rise/fall times | t <sub>ext</sub> R<br>t <sub>ext</sub> F |                  | See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option). |         |     | 30   | ns    |       |

# Electrical Characteristics at $Ta = -30 \text{ to} + 70^{\circ}\text{C}$ , $V_{SS} = 0.V$ , $V_{DD} = 3.5 \text{ to } 5.5 \text{ V}$ unless otherwise specified

|                         |                                   |                       |                                                                    | 7                                                                                   | 8 8                   |                     |                     |       |      |
|-------------------------|-----------------------------------|-----------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------|---------------------|---------------------|-------|------|
| Doro                    | meter                             | Symbol                | Applicable pins                                                    | Conditions                                                                          | and the same          | Ratings             |                     | Unit  | Note |
| Fala                    | inetei                            | Symbol                | Applicable pills                                                   | Conditions                                                                          | grin                  | typ                 | max                 | Offic | Note |
|                         |                                   |                       | P2, P3 (except for<br>the P33/HOLD pin)<br>P4, P5, P6              | V <sub>IN</sub> =13.5,<br>With the output n-channel<br>transistor off               |                       |                     | 5.0                 | μA    | 1    |
| Input high level        | current                           | I <sub>IH</sub> (2)   | P0, P1, PC, OSC1,<br>RES, P33/HOLD                                 | V <sub>IN</sub> = V <sub>DB</sub><br>With the output n-channel<br>fransistor off    |                       |                     | 1.0                 | μA    | 1    |
|                         |                                   | I <sub>IH</sub> (3)   | PD/PE, PC2, PC3                                                    | V <sub>IN</sub> ≔ V <sub>DD</sub> ,<br>With the output n-channel<br>transistor off  |                       |                     | 1.0                 | μA    | 1    |
| Input low level         | current                           | I <sub>IL</sub> (1)   | Inputs other than PD, PE,<br>PC2 and PC3                           | V <sub>IN</sub> = V <sub>S</sub> S,<br>With the output n-channel<br>transfistor off | -1.0                  |                     |                     | μA    | 2    |
|                         |                                   | J <sub>fL</sub> (2)   | RG2, PC3, PD, PE                                                   | V <sub>IN</sub> = V <sub>SS</sub> ,<br>With the output n-channel<br>transistor off  | -1.0                  |                     |                     | μA    | 2    |
|                         | j                                 | V (1880-)             | P2, P3 (except for //<br>the P33/HOLD pin) /                       | I <sub>OH</sub> = -1 mA                                                             | V <sub>DD</sub> – 1.0 |                     |                     | V     | 3    |
| Output high leve        | el voltage                        | / V <sub>ОН</sub> (1) | P6, PC                                                             | I <sub>OH</sub> = -0.1 mA                                                           | V <sub>DD</sub> – 0.5 |                     |                     | \ \   |      |
| 3                       |                                   | V (2)                 | P0, P1, P4, P5                                                     | I <sub>OH</sub> = -50 μA                                                            | V <sub>DD</sub> – 1.0 |                     |                     | V     | 4    |
|                         | /* / <sup>*</sup>                 | ¥ <sub>OH</sub> (2)   | P0, P1, P4, P3                                                     | I <sub>OH</sub> = -30 μA                                                            | V <sub>DD</sub> – 0.5 |                     |                     | V     | 4    |
| Output pull-up o        | current                           | l <sub>PO</sub>       | P0, P1, P4, P5                                                     | V <sub>IN</sub> = V <sub>SS</sub> , V <sub>DD</sub> = 5.5 V                         | -1.6                  |                     |                     | mA    | 4    |
| Output low leve         | Kyoltago                          | V <sub>OL</sub> (1)   | P0, P1, P2, P3, P4, P5,<br>P6, PC (except for<br>the P33/HOLD pin) | I <sub>OL</sub> = 1.6 mA                                                            |                       |                     | 0.4                 | V     | 5    |
| Output low leve         | vollage                           | V <sub>OL</sub> (2)   | P0, P1, P2, P3, P4, P5,<br>P6, PC (except for<br>the P33/HOLD pin) | I <sub>OL</sub> = 8 mA                                                              |                       |                     | 1.5                 | V     |      |
| Output off leaks        | ine current                       | I <sub>OFF</sub> (4)  | P2, P3, P4, P5, P6                                                 | V <sub>IN</sub> = 13.5 V                                                            |                       |                     | 5.0                 | μA    | 5    |
| Output on leake         | ige current                       | J <sub>OFF</sub> (2)  | P0, P1, PC                                                         | $V_{IN} = V_{DD}$                                                                   |                       |                     | 1.0                 | μA    | 5    |
| Comparator off          | set voltage                       | V <sub>OFF</sub> (1)  | PD1, PD2, PD3                                                      | $V_{IN} = V_{SS}$ to $V_{DD} - 1.5$ V                                               |                       | ±50                 | ±300                | mV    |      |
| Comparator on           | $\mathcal{N} = \mathcal{N}$       | V <sub>OFF</sub> (2)  | PD0                                                                | $V_{IN} = 1.5 \text{ to } V_{DD}$                                                   |                       | ±50                 | ±300                | mV    |      |
|                         | Hysteresis<br>voltage             | V <sub>HIS</sub>      |                                                                    |                                                                                     |                       | 0.1 V <sub>DD</sub> |                     | V     |      |
| Schmitt characteristics | High level thresHOLD voltage      | VtH                   | P2, P3, P5, P6,<br>OSC1 (EXT), RES                                 |                                                                                     | 0.5 V <sub>DD</sub>   |                     | 0.8 V <sub>DD</sub> | V     |      |
|                         | Low level<br>thresHOLD<br>voltage | VtL                   |                                                                    |                                                                                     | 0.2 V <sub>DD</sub>   |                     | 0.5 V <sub>DD</sub> | V     |      |

#### Continued from preceding page.

| Para                  | ameter                        |                                                | Symbol                               | Applicable pins | Conditions                                                                                                                                       |            | Ratings    | I                                       | Unit          | Note |
|-----------------------|-------------------------------|------------------------------------------------|--------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------------------------------------|---------------|------|
|                       | Oscillat                      |                                                | f <sub>CF</sub>                      | OSC1, OSC2      | Figure 2, 4 MHz                                                                                                                                  | min        | typ<br>4.0 | max                                     | MHz           |      |
| Ceramic<br>oscillator | Oscillate stabilizatime       | tor                                            | fcFS                                 | 0001, 0002      | Figure 3, 4 MHz                                                                                                                                  |            |            | 10                                      | ms            |      |
|                       | Cycle time                    | Input<br>Output                                | tckcy                                |                 |                                                                                                                                                  | 0.9<br>2.0 |            |                                         | jµs<br>∕ T∉yc |      |
| Coriol alask          | Low<br>level/<br>high         | Input                                          | <sup>t</sup> CKL                     | SCKO, SCK1      | The timing from Figure 4,                                                                                                                        | 0.4        |            | Jan | μs            |      |
| Serial clock          | level<br>pulse<br>widths      | Output                                         | <sup>t</sup> CKH                     | SCRU, SCR1      | Figure 5                                                                                                                                         | 1.0        |            |                                         | Тсус          |      |
|                       | Rise/<br>fall<br>times        | Output                                         | t <sub>CKR</sub>                     |                 |                                                                                                                                                  |            |            | 0.1                                     | μs            |      |
| Serial input          | Data se                       | etup time                                      | t <sub>ICK</sub>                     | SI0, SI1        | Stipulated with respect to the rising edge timing for                                                                                            | 0.3        |            |                                         | μs            |      |
| Seriai iriput         | Data h                        | old time                                       | t <sub>CKI</sub>                     | 310, 311        | SCK0 and SCK1 from<br>Figure 4                                                                                                                   | 0.3        | <i>A</i>   |                                         | μs            |      |
| Serial output         | Output<br>time                | delay                                          | <sup>t</sup> cko                     | S00, S01        | Stipulated with respect to<br>the rising edge timing for<br>SCK0 and SCK1 from<br>Figure 4 and the test load<br>shown in Figure 5                |            |            | 0.3                                     | μs            |      |
|                       | INT0 hi<br>level pu<br>widths |                                                | <sup>t</sup> IOH<br><sup>t</sup> IOL | INTO            | Conditions such that the INTO interrupt is accepted. Conditions such that time? O event counter and pulse width measurement inputs are accepted. | 2          |            |                                         | Тсус          |      |
| Pulse conditions      | interrup                      | w level<br>vidths for<br>ot inputs<br>nan INT0 | t <sub>IIH</sub>                     | Figure 6        | Conditions such that<br>all interrupts are<br>accepted                                                                                           | 2          |            |                                         | Тсус          |      |
|                       | PIN1 hi<br>level pu<br>widths | •                                              | teint<br>teint                       | PINT            | Conditions such that timer 1 event counter inputs are accepted.                                                                                  | 2          |            |                                         | Тсус          |      |
|                       | RES hi<br>level pu<br>widths  |                                                | t <sub>RSH</sub>                     | RES             | Conditions such that reset occurs                                                                                                                | 3          |            |                                         | Тсус          |      |
| Comparator res        | sponse s                      | peed                                           | T <sub>RS</sub>                      | PD Figure 7     |                                                                                                                                                  |            |            | 20                                      | ms            |      |
| Operating mod         | e chique                      | drain                                          |                                      | V //            | Using a 4 MHz ceramic oscillator                                                                                                                 |            | 3.0        | 5.0                                     | mA            | - 8  |
|                       | e corregit                    | uraili                                         | I <sub>DD OP</sub>                   | V <sub>DD</sub> | Using a 4 MHz external clock                                                                                                                     |            | 3.0        | 5.0                                     | mA            | 0    |
| HALT mode cu          | rrent dies                    | in .                                           |                                      | √ <sub>DD</sub> | Using a 4 MHz ceramic oscillator                                                                                                                 |            | 1.0        | 2.0                                     | mA            |      |
|                       |                               |                                                | DDHALT                               | טט יי           | Using a 4 MHz external clock                                                                                                                     |            | 1.0        | 2.0                                     | mA            |      |
| Hold-mode cur         | rent drair                    | r <sub>i</sub>                                 | IDDHØLD                              | V <sub>DD</sub> | V <sub>DD</sub> = 1.8 to 5.5 V                                                                                                                   |            | 0.01       | 10                                      | μA            |      |

Note: 1. Common input and output ports with open-drain output specifications are specified for the state with the output n-channel transistor turned off.
These pins cannot be used for input when the CMOS output specification option is selected.

2. Common input and output ports with open-drain output specifications are specified for the state with the output n-channel transistor turned off.

- Stipulated for open-drain output specifications with the output n-channel transistor in the off state.
- 6. In the reset state

Ratings for pull-up output specification pins are stipulated for the output pull-up current Ipo. These pins cannot be used for input when the CMOS output specification option is selected.

3. Stipulated for CMOS output specifications with the output n-channel transistor in the off state.

4. Stipulated for pull-up output specifications with the output n-channel transistor in the off state.



Figure 1 External Clock Input Waveform



Figure 2 Ceramic Oscillator Circuit



Figure 3 Oscillator Stabilization Time

Table 1 Ceramic Oscillator Guaranteed Constants

|                  |                          | C1 = 33 pF ± 10% |                          | C1 = 47 pF ± 10% |
|------------------|--------------------------|------------------|--------------------------|------------------|
|                  | 2 MHz (Murata) CSA2.00MG | C2 = 33 pF ± 10% | 2 MHz (Kyocera) KBR2.0MS | C2 = 47 pF ± 10% |
| External         |                          | Rd ≠0 Ω          |                          | $Rd = 0 \Omega$  |
| capacitance type |                          | C1 = 33 pF ± 10% |                          | C1 = 33 pF ± 10% |
| Bara Mark        | 4 MHz (Murata) CSA4.00MG | C2 = 33 pF ± 10% | 4 MHz (Kyocera) KBR4.0MS | C2 = 33 pF ± 10% |
|                  |                          | $Rd = 0 \Omega$  |                          | $Rd = 0\Omega$   |



A01B13

Figure 4 Serial I/O Timing



Figure 6 Input Timing for INTO, INTO, INTO, PINT and RES



Figure 7 Comparator Response Speed Trs Timing

#### **Application Development Tools**

Programs for the LC66354B, LC66356B and LC66358B microcontrollers are developed on an IBM-PC compatible personal computer running the MS-DOS operating system. A cross assembler and other tools are available. To make application development more convenient, Sanyo also provides a program debugging unit (EVA800/850), an evaluation board (EVA800/850-TB6630X), an evaluation chip (LC66599) and an on-chip EPROM microprocessor (LC66E308).



Structure of the Application Development Tools

#### 1. Program debugging unit (EVA800/850)

This is an emulator that provides functions for EPROM writing and serial data communications with external equipment (such as a host computer). It supports application development in machine language and program modification. Its main debugging functions include breaking, stepping and tracing. (The MPM6630X is used for the EVA800/850 monitor ROM.)

#### 2. Evaluation chip board (EVA800/850-TB6630X)

The evaluation chip signals and ports are output to the 42-pin connector and when the output cable is connected, the evaluation chip board converts these signals to the same pin assignments as those on the mass production chip. The evaluation chip board includes jumpers for setting options and other states, and these jumper settings allow the evaluation chip to implement the same I/O circuit types and functions as the mass production chip. However, there are differences in the HOLD mode clear timing and the electrical characteristics.

| J | umper |  |
|---|-------|--|
| _ |       |  |

| Type     | osc /                                   |         | Reset method                                                              | Power s | supply to the user application board                                                                         |
|----------|-----------------------------------------|---------|---------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------|
| Jumper   | Jumper 1 (J1)                           |         | Jumper 2 (J2: RES)                                                        |         | Jumper 3 (J3: V <sub>DD</sub> )                                                                              |
|          | External oscillator<br>(external clock) | INT (a) | Reset by a RUN instruction from the host computer.                        | ON (a)  | V <sub>DD</sub> is supplied to the user application printed circuit board through the evaluation chip board. |
| and mode | CF CF oscillator                        | EXT (b) | Reset by the reset circuit on the user application printed circuit board. | OFF (b) | Separate power supplies on the user application printed circuit board and the evaluation chip board.         |

#### Switches (SW9, SW10 and SW11)

| Туре           | and the second | Port 0 and 1 outp | ut levels | on reset              | Watchd | og timer presence or absence setting |  |  |
|----------------|----------------|-------------------|-----------|-----------------------|--------|--------------------------------------|--|--|
| Switch         | dari Barrelli  | SW11: P0HL        |           | SW10: P1HL            |        | SW9: WDC                             |  |  |
| Switch setting | ΘN             | Port 0 high       | ON        | Port 1 highPort 1 low | ON     | Watchdog timer present               |  |  |
| and mode       | OFF            | Port 0 low        | OFF       |                       | OFF    | Watchdog timer absent                |  |  |

Switches SW1 to SW8: Pull-up resistor option settings

- Set the corresponding switch to the on position for built-in pull-up resistors, and set the switch to the off position for open drain output.
- These settings can be specified for individual pins.

#### 3. Cross Assembler

| Cross assembler (file name) | Object microprocessors                                      | Limitations on program creation                                                                                                                                                        |
|-----------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LC66S. EXE                  | LC66354B, 66356B, 66358B<br>(LC66E308, 66P308)<br>(LC66599) | SB instruction limitations  • LC66354B : Only SB0 can be used.  • LC66356B, 66358B : Only SB0 and SB1 can be used.  (LC66E308, 66P308)  • LC66599 : SB0, SB1, SB2 and SB3 can be used. |

4. Simulation chip (See the LC66E308 individual product catalog for more details.)

The LC66E308 simulation chip is an on-chip EPROM microprocessor. Mounted configuration operation can be confirmed in the application product by using a dedicated conversion board (the W66EP308D/408D for DIP products and the W66EP308Q/408Q for QFP products) and writing programs with a commercial PROM writer.

#### • Form

The LC66E308 has a pin arrangement and functions identical to those of the LC66354B, LC66356B and LC66358B. However, there are differences in the HOLD mode clear timing and the electrical characteristics. The figure below shows the pin assignment.

#### • Options

The options (the port 0 and 1 level at reset, the watchdog times and the port output circuit types) for the microprocessor to be evaluated can be specified by EPROM data. (The next item describes the option data area and definitions.) This allows evaluation with the same peripheral circuits as those that will be used in the mass production product.

#### **Pin Assignment**



## **Option Data Area and Definitions**

| ROM area | Bit       |             | Option item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relation between option and data             |
|----------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|          | 7         |             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |
|          | 6         | Unused      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must be set to zeros                         |
|          | 5         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 2000H    | 4         | Oscillato   | roption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 = ceramic oscillator<br>0 = external clock |
| 200011   | 3         | Unused      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must be set to zero                          |
|          | 2         | P1          | Level of reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 = high level                               |
|          | 1         | P0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 ≠ low level                                |
|          | 0         | Watchdo     | g timer option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 ≠ present, 0 = absent                      |
|          | 7         | P13         | g of the state of  |                                              |
|          | 6         | P12         | get pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
|          | 5         | P11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 200411   | 4         | P10         | Custous dissuit to me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , DI COD                                     |
| 2001H    | 3         | P03         | Output circuit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n = ru, (                                    |
|          | 2         | P02         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 1         | P01         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 0         | P00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 7         | Unused      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must be set to zero.                         |
|          | 6         | P32         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 5         | P31         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 200011   | 4         | P30         | Output circuit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/= PU, 0 = OD                               |
| 2002H    | 3         | P23         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 2         | P22         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 1         | P21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 0         | P20 🕺       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 7         | P53         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 6         | P52         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 5         | ,P5,1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 000011   | 4         | <b>₽</b> 50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 84 9 98                                    |
| 2003H    | 3         | P43         | Output circuit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 = PU, 0 = OD                               |
|          | 2         | P42 🕠       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | 1 / 1     | P41         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|          | A Quality | P40         | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |
|          | ₫ to 4    | Unused      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |
|          | 3         | P63         | grade of the state |                                              |
| 2004H    | 2         | P62         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 84 0 05                                    |
|          | 1         | P61         | Output circuit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 = PU, 0 = OD                               |
|          | 0         | P60 /       | green and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 2005H    | 7 to 0    | Unused      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Must be set to zero.                         |
| 2006H    | 7 to 0    | Unused      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must be set to zero.                         |
| 2007H    | 7 to 4    | Unused      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must be set to zero.                         |
|          | % 3 /     | PC3         | Output aircuit to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 PH 0 OP                                    |
| 2007Н    | 2         | PC2         | Output circuit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 = PU, 0 = OD                               |
|          | 1 0       | Unused      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must be set to zero.                         |
|          | Jeth Jen' |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                            |

## LC663XX Series Instruction Table (by function)

#### Abbreviations:

Accumulator AC: E: E register CF: Carry flag ZF: Zero flag

Data pointer DPH, DPL HL: XY: Data pointer DPX, DPY

Data memory M:

M (HL): Data memory pointed to by the DPH, DPL data pointer M (XY): Data memory pointed to by the DPX, DPY data pointer

M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPH, DPL data pointer

Stack pointer SP:

M2 (SP): Two words of data memory pointed to by the stack pointer M4 (SP): Four words of data memory pointed to by the stack pointer

in: n bits of immediate data

t2: Bit specification

| t2  | 11             | 10 | 01 | 00 |
|-----|----------------|----|----|----|
| Bit | 2 <sup>3</sup> | 22 | 21 | 20 |

PCh: Bits 8 to 11 in the PC PCm: Bits 4 to 7 in the PC PC1: Bits 0 to 3 in the PC User flag, n = 0 to 15 Fn:

TIMER0: Timer 0 TIMER1: Timer 1 SIO: Serial register

P: Port

Port indicated by 4 bits of immediate data P (i4):

INT: Interrupt enable flag

( ), [ ]: Indicates the contents of a location

Transfer direction, result ←:

Exclusive or ∀: ∀: Logical and Logical or, ۸: Addition +:

Subtraction

Taking the one's complement

#### Instructions

| Instruction<br>group                          |         | /Inemonic                        |                     |                     | Instr                 | ructi               | on co                | ode                 |                     |                      | Number of bytes | Number of cycles | Operation                                                                          | Description                                                                                                               | Affected    | Note |
|-----------------------------------------------|---------|----------------------------------|---------------------|---------------------|-----------------------|---------------------|----------------------|---------------------|---------------------|----------------------|-----------------|------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Instruc                                       |         |                                  | D <sub>7</sub>      | D <sub>6</sub>      | D <sub>5</sub>        | D <sub>4</sub>      | D <sub>3</sub>       | D <sub>2</sub>      | D <sub>1</sub>      | D <sub>0</sub>       | Nun             | Nun              |                                                                                    |                                                                                                                           | status bits |      |
|                                               | CLA     | Clear AC                         | 1                   | 0                   | 0                     | 0                   | 0                    | 0                   | 0                   | 0                    | 1               | 1                | $AC \leftarrow 0$ (Equivalent to LAI0.)                                            | Clear AQ                                                                                                                  | ZF          | 1    |
|                                               | DAA     | Decimal adjust AC in addition    | 1<br>0              | 1<br>0              | 0<br>1                | 0                   | 1<br>0               | 1<br>1              | 1<br>1              | 1<br>0               | 2               | 2                | $AC \leftarrow (AC) + 6$<br>(Equivalent to ADI6.)                                  | Add six to AC.                                                                                                            | ZF          |      |
| ns                                            | DAS     | Decimal adjust AC in subtraction | 1<br>0              | 1<br>0              | 0                     | 0                   | 1                    | 1                   | 1                   | 1                    | 2               | 2                | AC ← (AC) + 10<br>(Equivalent to<br>ADIOAH.)                                       | Add 10 to AC                                                                                                              | ZF          |      |
| rctio                                         | CLC     | Clear CF                         | 0                   | 0                   | 0                     | 1                   | 1                    | 1                   | 1                   | 0                    | 1               | 1                | CF ← 0                                                                             | Clear CF to 0.                                                                                                            | ĆF          |      |
|                                               | STC     | Set CF                           | 0                   | 0                   | 0                     | 1                   | 1                    | 1                   | 1                   | 1                    | 1               | 1                | CF ← 1                                                                             | Set CF to 1                                                                                                               | CF          |      |
| ation ir                                      | СМА     | Complement AC                    | 0                   | 0                   | 0                     | 1                   | 1                    | 0                   | 0                   | 0                    | 1               | 1                | $AC \leftarrow (\overline{AC})^{3}$                                                | Take the one's complement of AC.                                                                                          | ZF          |      |
| l dir                                         | IA      | Increment AC                     | 0                   | 0                   | 0                     | 1                   | 0                    | 1                   | 0                   | 0                    | 1               | 1                | AC ← (AC) + 1                                                                      | Increment AC.                                                                                                             | ZF, CF      |      |
| mar                                           | DA      | Decrement AC                     | 0                   | 0                   | 1                     | 0                   | 0                    | 1                   | 0                   | 0                    | 1               | 1                | AC,←,(AC) – 1                                                                      | Decrement AC,                                                                                                             | ZF, CF      |      |
| Accumulator manipulation instructions         | RAR     | Rotate AC right through CF       | 0                   | 0                   | 0                     | 1                   | 0                    | 0                   | 0                   | 0                    | 1               | 1                | $AC_3 \leftarrow (CF)$<br>$AC_0 \leftarrow (AC_0 + 1)$<br>$CF \leftarrow (AC_0)$   | Shift AC (including CF) right.                                                                                            | CF          |      |
| Acc                                           | RAL     | Rotate AC left through CF        | 0                   | 0                   | 0                     | 0                   | 0                    | 0                   | 0                   | 1                    | 1 ,*            | 1                | $AC_0 \leftarrow (CF)$ ,<br>$ACn + 1 \leftarrow (ACn)$ ,<br>$CF \leftarrow (AC_3)$ | Shift AC (including CF) left.                                                                                             | CF, ZF      |      |
|                                               | TAE     | Transfer AC to E                 | 0                   | 1                   | 0                     | 0                   | 0                    | 1                   | 0                   | 1                    | 1,4             | 1 🐇              | $\mathbf{E} \leftarrow (\mathbf{AC})$                                              | Move the contents of AC to E.                                                                                             |             |      |
|                                               | TEA     | Transfer E to AC                 | 0                   | 1                   | 0                     | 0                   | 0                    | 1                   | 1                   | 0                    | /1              | 1                | AC ← (E)                                                                           | Move the contents of E to AC.                                                                                             | ZF          |      |
|                                               | XAE     | Exchange AC with E               | 0                   | 1                   | 0                     | 0                   | 0                    | 1                   | 0-2                 | Ø                    | 1               | 1                | (AC) ↔ (E)                                                                         | Exchange the contents of AC and E.                                                                                        |             |      |
| uoi                                           | IM      | Increment M                      | 0                   | 0                   | 0                     | 1                   | 0                    | O.                  | 1                   | 0                    | 1               | 1                | M (HL) ← [M (HL)]<br>+ 1                                                           | Increment M (HL).                                                                                                         | ZF, CF      |      |
| nstruct                                       | DM      | Decrement M                      | 0                   | 0                   | 1                     | 0                   | AO .                 | 0                   | 1                   | Ô                    | 1               | 1                | M (HL) ← [M (HL)]<br>– 1                                                           | Decrement M (HL).                                                                                                         | ZF, CF      |      |
| lation                                        | IMDR i8 | Increment M direct               | 1<br>I <sub>7</sub> | 1<br>I <sub>6</sub> | 0<br>I <sub>5</sub> , | 0<br>1 <sub>4</sub> | /0<br>I <sub>3</sub> | 1<br>l <sub>2</sub> | 1                   | 1.<br>I <sub>0</sub> | 2               | 2                | M (i8) ← [M (i8)] + 1                                                              | Increment M (i8).                                                                                                         | ZF, CF      |      |
| manipu                                        | DMDR i8 | Decrement M direct               | 1<br>I <sub>7</sub> | 1<br>I <sub>6</sub> |                       | 0<br>I <sub>4</sub> | 0<br>J <sub>3</sub>  | 0<br>l <sub>2</sub> | 1<br>1              | 1<br>lo              | 2               | 2                | M (i8) ← [M (i8)] – 1                                                              | Decrement M (i8).                                                                                                         | ZF, CF      |      |
| Memory manipulation instruction               | SMB t2  | Set M data bit                   | 0,                  | 0                   | 0                     | 0                   | 4                    | 1                   | ţ,                  | t <sub>0</sub>       | 1               | 1                | [M (HL), t2] ← 1                                                                   | Set the bit in M (HL) specified by t0 and t1 to 1.                                                                        |             |      |
| ğ                                             | RMB t2  | Reset M data bit                 | 0                   | 0                   | 1                     | 0                   | 1                    | 1                   | t <sub>1</sub>      | t <sub>0</sub>       | 1,4             | 1                | [M (HL), t2] ← 0                                                                   | Clear the bit in M (HL) specified by t0 and t1 to 0.                                                                      | ZF          |      |
|                                               | AD      | Add M to AC                      | 0                   | 0                   | 0                     | a                   | 9                    | 1                   | 1                   | ď                    | 1               | 1                | $AC \leftarrow (AC) + [M\ (HL)]$                                                   | Add the contents of AC and M (HL) as two's complement values and store the result in AC.                                  | ZF, CF      |      |
| instructions                                  | ADDR i8 | Add M direct to AC               | 1                   | 1<br>16             | 0<br>1 <sub>5</sub>   | 0<br>I <sub>4</sub> | 13                   | 0<br>I <sub>2</sub> | 0<br>I <sub>1</sub> | 1<br>I <sub>0</sub>  | 2               | 2                | AC ← (AC) + [M (i8)]                                                               | Add the contents of AC and M (i8) as two's complement values and store the result in AC.                                  | ZF, CF      |      |
| comparison                                    | ADC     | Add Mito AC with                 | 0                   | 0                   | 0                     | 0                   | 0                    | 0                   | 1                   | 0                    | 1               | 1                | $  AC \leftarrow (AC) + [M (HL)] $ $ + (CF) $                                      | Add the contents of AC,<br>M (HL) and C as two's<br>complement values and<br>store the result in AC.                      | ZF, CF      |      |
| Arithmetic, logic and comparison instructions | ADI i4  | Add immediate<br>data to AC      | 41<br>0             | 1 0                 | 0                     | 0                   | 1<br>I <sub>3</sub>  | 1<br>I <sub>2</sub> | 1<br>I <sub>1</sub> | 1<br>I <sub>0</sub>  | 2               | 2                | $\label{eq:ac} \begin{split} AC &\leftarrow (AC) + I_3,I_2,\\ I_1,I_0 \end{split}$ | Add the contents of AC and<br>the immediate data as two's<br>complement values and<br>store the result in AC.             | ZF          |      |
| Arithme                                       | SUBC    | Subtract AC from<br>M with CF    | 0                   | 0                   | 0                     | 1                   | 0                    | 1                   | 1                   | 1                    | 1               | 1                | $\begin{array}{l} AC  [M \ (HL)] - (AC) \\ - \ (\overline{CF}) \end{array}$        | Subtract the contents of AC and $\overline{\text{CF}}$ from M (HL) as two's complement values and store the result in AC. | ZF, CF      | 2    |
|                                               | ANDA    | And M with AC<br>then store AC   | 0                   | 0                   | 0                     | 0                   | 0                    | 1                   | 1                   | 1                    | 1               | 1                | AC ← (AC) ∀<br>[M (HL)]                                                            | Take the logical and of AC and M (HL) and store the result in AC.                                                         | ZF          |      |

Note: 1. Has a vertical skip function.
2. CF will be zero if there was a borrow and one otherwise.

Continued from preceding page.

| ction                                         | _           |                                             |                     |                | Inst                 | ructi               | on co               | ode                  |                |                     | er of           | er of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                        |                                                                                                                                                                                                                             | Affected    |      |
|-----------------------------------------------|-------------|---------------------------------------------|---------------------|----------------|----------------------|---------------------|---------------------|----------------------|----------------|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Instruction<br>group                          | N           | Mnemonic                                    | D <sub>7</sub>      | D <sub>6</sub> | D <sub>5</sub>       | D <sub>4</sub>      | D <sub>3</sub>      | D <sub>2</sub>       | D <sub>1</sub> | D <sub>0</sub>      | Number of bytes | Number of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Operation                                                                                                | Description                                                                                                                                                                                                                 | status bits | Note |
|                                               | ORA         | Or M with AC then store AC                  | 0                   | 0              | 0                    | 0                   | 0                   | 1                    | 0              | 1                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC ← (AC) ∨<br>[M (HL)]                                                                                  | Take the legical or of AC and M (HL) and store the result in AC.                                                                                                                                                            | ZF          |      |
|                                               | EXL         | Exclusive or M<br>with AC then<br>store AC  | 0                   | 0              | 0                    | 1                   | 0                   | 1                    | 0              | 1                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC ← (AC) ∀<br>[M (HL)]                                                                                  | Take the logical exclusive or of AC and M (HL) and store the result in AC.                                                                                                                                                  | ZF          |      |
|                                               | ANDM        | And M with AC then store M                  | 0                   | 0              | 0                    | 0                   | 0                   | 0                    | 1              | 1                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M (HL) ← (AC) ↑ (M (HL)]                                                                                 | Take the logical and of AC<br>and M (HL) and store the<br>result in M (HL)                                                                                                                                                  | ZF          |      |
|                                               | ORM         | Or M with AC then store M                   | 0                   | 0              | 0                    | 0                   | 0                   | 1                    | 0              | 0                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M (HL) ← (AC) ∨<br>[M (HL)]                                                                              | Take the logical or of AC and M (HL) and store the result m M (HL).                                                                                                                                                         | ZF          |      |
| Arithmetic, logic and comparison instructions | СМ          | Compare AC<br>with M                        | 0                   | 0              | 0                    | 1                   | 0                   | 1                    | 1              | 0                   | 1               | and the state of t | [M (HL)] + (AC) +                                                                                        | Compare the contents of AC and M (HL) and set or clear CF and ZF according to the result.    Magnitude   CF   ZF   [M (HL)] > (AC)   0   0   [M (HL)] = (AC)   1   1   [M (HL)] < (AC)   1   0                              | ZF, CF      |      |
| Arithmetic, logic an                          | Cl i4       | Compare AC wiht immediate data              | 1 1                 | 1 0            | 0 1                  | 0 0                 | 1,0                 | 1 l <sub>2</sub>     | 1<br>1<br>11   | 1<br>lo             | 2               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 12 1116 * (AC) +1                                                                                     | $ \begin{array}{c cccc} Compare the contents of AC \\ and the immediate data I_3 I_2 \\ I_1 I_0 \text{ and set or clear CF and} \\ ZF \text{ according to the result.} \\ \hline & & & & & & & & & \\ \hline & & & & & & &$ | ZF, CF      |      |
|                                               | CLI i4      | Compare DP <sub>L</sub> with immediate data | 1,                  | 1,<br>0        | 0                    | 0<br>1              | 1<br>1 <sub>3</sub> | 1,<br>1 <sub>2</sub> | 1              | 1<br>I <sub>0</sub> | 2 10            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ZF \leftarrow 1$<br>if $(DP_L) = I_3 I_2 I_1 I_0$<br>$ZF \leftarrow 0$<br>if $(DP_L) = I_3 I_2 I_1 I_0$ | Compare the contents of DP <sub>L</sub> with the immediate data. Set ZF if identical and clear ZF if not.                                                                                                                   | ZF          |      |
|                                               | CMB t2      | Compare AC bit with M data bit              | 1                   | 1<br>1         | )<br>O               | D<br>T              | 1                   | 1 0                  | 1,4            | 1. to               | 2               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ZF \leftarrow 1$<br>if (AC, t2) =<br>[M (HL), t2]<br>$ZF \leftarrow 0$<br>if (AC, t2) =<br>[M (HL), t2] | Compare the corresponding bits specified by t <sub>0</sub> and t <sub>1</sub> in AC and M(HL). Set ZF if identical and clear ZF if not.                                                                                     | ZF          |      |
|                                               | LAE         | Load AC and E<br>from M2 (HL)               | 0                   | 1              | 0                    | 1                   | 1                   | 1                    | 0              | 0                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC ← M (HL)<br>E ← M (HL +1)                                                                             | Load the contents of M2 (HL) into AC, E.                                                                                                                                                                                    |             |      |
|                                               | LAI i4      | Load AC with immediate data                 |                     | 0              | 0                    | 0                   | l <sub>3</sub>      | I <sub>2</sub>       | I <sub>1</sub> | I <sub>0</sub>      | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $AC \leftarrow I_3 I_2 I_1 I_0$                                                                          | Load the immediate data into AC.                                                                                                                                                                                            | ZF          | 3    |
| tions                                         | LADR 18     | Load AC from M<br>direct                    | 1<br>I <sub>7</sub> |                | .0<br>I <sub>5</sub> | 0<br>I <sub>4</sub> |                     | 0<br>I <sub>2</sub>  |                |                     | 2               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC ← [M (i8)]                                                                                            | Load the contents of M (i8) into AC.                                                                                                                                                                                        | ZF          |      |
| instruc                                       | S           | Store AC to M                               | 0,                  | N <sup>2</sup> | .00                  | 0                   |                     | 1                    |                | 1                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M (HL) ← (AC)                                                                                            | Store the contents of AC into M (HL).                                                                                                                                                                                       |             |      |
| store                                         | SAE         | Store AC and E to M2 (HL)                   | .0                  | 1              | 0                    | 1                   | 1                   | 1                    | 1              | 0                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M (HL) ← (AC)<br>M (HL + 1) ← (E)                                                                        | Store the contents of AC, E into M2(HL).                                                                                                                                                                                    |             |      |
| Load and store instructions                   | LA reg      | Load AC from<br>M (reg)                     | 0                   | 1              | 0                    | 0                   | 1                   | 0                    | t <sub>0</sub> | 0                   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $AC \leftarrow [M (reg)]$                                                                                | Load the contents of M (reg) into AC. The reg is either HL or XY depending on t0.  reg t <sub>0</sub> HL 0                                                                                                                  | ZF          |      |
| Note: :                                       | 3 Has a ver | tical skip function.                        |                     |                |                      |                     |                     |                      |                |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          | XY 1                                                                                                                                                                                                                        |             |      |

Continued from preceding page.

| ction                       |           |                                                                |                      |                                       | Instr               | ructio              | on c                | ode                 |                     |                    | er of           | er of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                    | Affected    |      |
|-----------------------------|-----------|----------------------------------------------------------------|----------------------|---------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Instruction<br>group        | N         | Mnemonic                                                       | D <sub>7</sub>       | D <sub>6</sub>                        | D <sub>5</sub>      | $D_4$               | D <sub>3</sub>      | D <sub>2</sub>      | D <sub>1</sub>      | D <sub>0</sub>     | Number of bytes | Number o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Operation                                                                                                                         | Description                                                                                                                                                                                                                        | status bits | Note |
|                             | LA reg, I | Load AC from<br>M (reg) then<br>increment reg                  | 0                    | 1                                     | 0                   | 0                   | 1                   | 0                   | t <sub>0</sub>      | 1                  | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} AC \leftarrow [M \ (reg)] \\ DP_{L} \leftarrow (DP_{L}) + 1 \\ or \ DP_{Y} \leftarrow (DP_{Y}) + 1 \end{array}$ | Load the contents of M (reg) into AC, (The reg is either HL or XY.) Then increment the contents of either DP <sub>L</sub> or DP <sub>V</sub> . The relationship between to and reg is the same as that for the LA reg instruction. | ZF          | 4    |
|                             | LA reg, D | Load AC from<br>M (reg) then<br>decrement reg                  | 0                    | 1                                     | 0                   | 1                   | 1                   | 0                   | t <sub>0</sub>      | 1                  | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $AC \leftarrow [M \text{ (reg)}]$ $DP_{L} \leftarrow (DP_{A}) - 1$ or $DP_{Y} \leftarrow (DP_{Y}) - 1$                            | Load the contents of M (reg) into AG. (The reg is either HL or XY.) Then decrement the contents of either DP <sub>L</sub> or DP <sub>V</sub> . The relationship between to and reg is the same as that for the LA reg instruction. | ZF          | 5    |
| SL                          | XA reg    | Exchange AC with M (reg)                                       | 0                    | 1                                     | 0                   | 0                   | 1                   | 1                   | t <sub>0</sub>      | 0                  | 1               | A Company of the Comp | (AC) → [M-(reg)]                                                                                                                  | Exchange the contents of M (reg) and AC. The reg is either HL or XY depending on t <sub>0</sub> .  reg t <sub>0</sub> HL 0  XY 1                                                                                                   |             |      |
| Load and store instructions | XA reg, I | Exchange AC<br>with M (reg) then<br>increment reg              | 0                    | 1                                     | 0                   | 0                   | 1                   | 1 st                | 16                  | 1                  | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(AC) \leftrightarrow [M \text{ (reg)}]$ $DP_L \leftarrow (DP_L) + 1$ or $DP_Y \leftarrow (DP_Y) + 1$                             | Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then increment the contents of either DP <sub>L</sub> or DP <sub>Y</sub> . The relationship between t0 and reg is the as that for the XA reg instruction.   | ZF          | 6    |
|                             | XA reg, D | Exchange AC<br>with M (reg) then<br>decrement reg              | 0                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ø                   | 1                   | 1                   | 1                   | t <sub>0</sub>      | 1                  | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(AC) \leftrightarrow [M \text{ (reg)}]$ $DP_L \leftarrow (DP_L) - 1$ or $DP_Y \leftarrow (DP_Y) - 1$                             | Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then decrement the contents of either DP <sub>L</sub> or DP <sub>Y</sub> . The relationship between t0 and reg is the as that for the XA reg instruction.   | ZF          | 7    |
|                             | XADR i8   | Exchange AC with M direct                                      | 1 1 <sub>7</sub>     | l <sub>6</sub>                        | 0<br>1 <sub>5</sub> |                     | 1<br>I <sub>3</sub> | 0<br>l <sub>2</sub> | 0<br>I <sub>1</sub> | , f <sub>0</sub> , | 2               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(AC) \leftrightarrow [M (i8)]$                                                                                                   | Exchange the contents of AC with M (i8).                                                                                                                                                                                           |             |      |
|                             | LEAI i8   | Load E & AC with immediate data                                | 1.<br>I <sub>7</sub> |                                       | 0<br>I <sub>5</sub> | 0<br>I <sub>4</sub> | 0<br>I <sub>3</sub> | 1<br>I <sub>2</sub> | 11                  | ľ <sub>0</sub>     | 2               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $E \leftarrow I_7 I_6 I_5 I_4$<br>$AC \leftarrow I_3 I_2 I_1 I_0$                                                                 | Load the immediate data i8 into E, AC.                                                                                                                                                                                             |             |      |
|                             | RTBL      | Read table data<br>from program<br>ROM                         | 0                    | 1                                     | 0                   | 1                   | À                   | 0                   | 1                   | 0                  | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E, AC ←<br>[ROM (PCh, E, AC)]                                                                                                     | Load into E, AC the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.                                                                                                                        |             |      |
|                             | RTBLP     | Read table data<br>from program<br>ROM then output<br>to P4, 5 | 0                    | 1,4                                   | O'                  | 1                   | 1                   | 0                   | 0                   | 0                  | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Port 4, 5 ←<br>[ROM (PCh, E, AC)]                                                                                                 | Output from ports 4 and 5 the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.                                                                                                              |             |      |

Note: 4 ZF is set according to the result of incrementing DP<sub>L</sub> or DP<sub>Y</sub>.
5. ZF is set according to the result of decrementing DP<sub>L</sub> or DP<sub>Y</sub>.
6. ZF is set according to the result of incrementing DP<sub>L</sub> or DP<sub>Y</sub>.
7. ZF is set according to the result of decrementing DP<sub>L</sub> or DP<sub>Y</sub>.

#### Continued from preceding page.

| ا ۾ جا                                 |         | An am ania                                                                                   |                     | ļ                                     | Instr          | uctic               | n co                | ode                 |                     |                     | Number of bytes | Number of cycles | Operation                                                                                                                                                      | Description                                                                   | Affected    | Note |
|----------------------------------------|---------|----------------------------------------------------------------------------------------------|---------------------|---------------------------------------|----------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|------|
| Instruction<br>group                   | N.      | Inemonic                                                                                     | D <sub>7</sub>      | $D_6$                                 | D <sub>5</sub> | D <sub>4</sub>      | D <sub>3</sub>      | D <sub>2</sub>      | D <sub>1</sub>      | D <sub>0</sub>      | Num!<br>bytes   | Num!<br>cycle    | Operation                                                                                                                                                      | Description                                                                   | status bits | Note |
|                                        | LDZ i4  | Load DP <sub>H</sub> with<br>zero and DP <sub>L</sub> with<br>immediate data<br>respectively | 0                   | 1                                     | 1              | 0                   | l <sub>3</sub>      | l <sub>2</sub>      | I <sub>1</sub>      | I <sub>0</sub>      | 1               | 1                | $\begin{array}{c} DP_{H} \leftarrow 0 \\ DP_{L} \leftarrow I_3  I_2  I_1  I_0 \end{array}$                                                                     | Load zero into DP <sub>H</sub> and the immediate data i4 into DP <sub>L</sub> |             |      |
|                                        | LHI i4  | Load DP <sub>H</sub> with immediate data                                                     | 1<br>0              | 1<br>0                                |                | 0<br>0              | 1<br>I <sub>3</sub> |                     | 1<br>I <sub>1</sub> | 1<br>I <sub>0</sub> | 2               | 2                | $DP_H \leftarrow I_3 \; I_2 \; I_1 \; I_0$                                                                                                                     | Load the immediate data i4 into DP <sub>H</sub> .                             | 77          |      |
|                                        | LLI i4  | Load DP <sub>L</sub> with immediate data                                                     | 1<br>0              | 1<br>0                                |                | 0<br>1              | 1<br>I <sub>3</sub> | 1<br>I <sub>2</sub> | 1<br>I <sub>1</sub> | 1<br>I <sub>0</sub> | 2               | 2                | DP <sub>L</sub> ← I <sub>3</sub> I <sub>2</sub> I <sub>1</sub> I <sub>0</sub>                                                                                  | Load the immediate data i4 into DP <sub>L</sub>                               |             |      |
|                                        | LHLI i8 | Load DP <sub>H</sub> , DP <sub>L</sub><br>with immediate<br>data                             | 1<br>I <sub>7</sub> | 1<br>I <sub>6</sub>                   |                | 0<br>I <sub>4</sub> | 0<br>I <sub>3</sub> | 0<br>I <sub>2</sub> | 0<br>I <sub>1</sub> | 0<br>I <sub>0</sub> | 2               | 2                | DP <sub>H</sub> ← I <sub>7</sub> I <sub>6</sub> I <sub>5</sub> I <sub>4</sub> DP <sub>L</sub> ← I <sub>3</sub> I <sub>2</sub> I <sub>1</sub> I <sub>0</sub>    | Load the immediate data into DL <sub>PR</sub> DP <sub>L</sub> .               | j"          |      |
|                                        | LXYI i8 | Load DP <sub>X</sub> , DP <sub>Y</sub><br>with immediate<br>data                             | 1<br>I <sub>7</sub> | 1<br>I <sub>6</sub>                   |                | 0<br>I <sub>4</sub> | 0<br>I <sub>3</sub> | 0<br>I <sub>2</sub> | 1<br>I <sub>1</sub> | 0<br>I <sub>0</sub> | 2               | 2                | DP <sub>X</sub> ← I <sub>7</sub> I <sub>6</sub> I <sub>5</sub> I <sub>4</sub><br>DP <sub>Y</sub> ← I <sub>3</sub> I <sub>2</sub> I <sub>1</sub> I <sub>0</sub> | Load the immediate data into DL <sub>X</sub> , DP <sub>Y</sub> .              |             |      |
|                                        | IL      | Increment DP <sub>L</sub>                                                                    | 0                   | 0                                     | 0              | 1                   | 0                   | 0                   | 0                   | 1                   | 1               | 1 ,              | DP <sub>L</sub> ← (DP <sub>L</sub> ) + 1                                                                                                                       | Increment the contents . of DP <sub>L</sub>                                   | ZF          |      |
| ဖွ                                     | DL      | Decrement DP <sub>L</sub>                                                                    | 0                   | 0                                     | 1              | 0                   | 0                   | 0                   | 0                   | 1                   | 1               | and the second   | DP <sub>L</sub> ← (DP <sub>L</sub> ) - 1                                                                                                                       | Decrement the contents of DP <sub>L</sub> .                                   | ZF          |      |
| Data pointer manipulation instructions | IY      | Increment DPY                                                                                | 0                   | 0                                     | 0              | 1                   | 0                   | 0                   | 1                   | 1                   | 1,00            |                  | $DP_Y \leftarrow (DP_Y) + 1$                                                                                                                                   | Increment the contents of DPy.                                                | ZF          |      |
| on inst                                | DY      | Decrement DP <sub>Y</sub>                                                                    | 0                   | 0                                     | 1              | 0                   | 0                   | 0                   | 1                   | 1                   | 1               | 1                | DPy ← (DP <sub>Y</sub> ) – 1                                                                                                                                   | Decrement the contents of DP <sub>Y</sub> .                                   | ZF          |      |
| nipulati                               | TAH     | Transfer AC to DP <sub>H</sub>                                                               | 1<br>1              | 1<br>1                                |                | 0<br>1              |                     | 1<br>0              | 1<br>0              | 1,<br>0             | 2               | 2                | DP <sub>H</sub> ← (AC)                                                                                                                                         | Transfer the contents of AC to DP <sub>H</sub> .                              |             |      |
| iter ma                                | THA     | Transfer DP <sub>H</sub> to<br>AC                                                            | 1<br>1              | 1<br>1                                |                | 0<br>0              |                     | 1,°                 | 1<br>0              | 1<br>0              | 2               | 2                | $AC \leftarrow (DP_{\vec{H}})$                                                                                                                                 | Transfer the contents of DP <sub>H</sub> to AC                                | ZF          |      |
| ta poin                                | XAH     | Exchange AC with DP <sub>H</sub>                                                             | 0                   | 1                                     | 0              | 0                   | , <b>0</b>          | 0                   | 0                   | 0                   | .1              | 1                | (AC) ↔ (DP <sub>H</sub> )                                                                                                                                      | Exchange the contents of AC and DP <sub>H</sub> .                             |             |      |
| Da                                     | TAL     | Transfer AC to DP <sub>L</sub>                                                               | 1<br>1              | 1<br>1                                | 1 🚽            | 0<br>1              | /1<br>0             | 1<br>0 ﴿            | 1<br>0              | 1                   | 2               | 2                | DP <sub>L</sub> ← (AC)                                                                                                                                         | Transfer the contents of AC to DP <sub>L</sub> .                              |             |      |
|                                        | TLA     | Transfer $\mathrm{DP_L}$ to $\mathrm{AC}$                                                    | 1<br>1              | 1<br>1,                               |                | 0                   |                     | 0                   | 1<br>0              | 1                   | 2               | 2                | $AC \leftarrow (DP_L)$                                                                                                                                         | Transfer the contents of DP <sub>L</sub> to AC.                               | ZF          |      |
|                                        | XAL     | Exchange AC with DP <sub>L</sub>                                                             | 0,2                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0              | 0                   | 0                   | 0                   |                     | 1                   | 1               | A A              | $(AC) \leftrightarrow (DP_L)$                                                                                                                                  | Exchange the contents of AC and DP <sub>L</sub> .                             |             |      |
|                                        | TAX     | Transfer AC to DP <sub>X</sub>                                                               | 1,50°<br>1,50°      |                                       | 0<br>4         | 1                   | 1<br>0              | 1<br>0              |                     | 1<br>0              | 2.              | 2                | $DP_X \leftarrow (AC)$                                                                                                                                         | Transfer the contents of AC to $DP_X$ .                                       |             |      |
|                                        | TXA     | Transfer DP <sub>X</sub> to AC                                                               | 1<br>1              | 1 <sup>1</sup>                        | 1<br>1         | 0                   | <b>1</b>            | )1<br>0             | 1<br>1,             | <b>1</b><br>0       | 2               | 2                | $AC \leftarrow (DP_X)$                                                                                                                                         | Transfer the contents of DP <sub>X</sub> to AC.                               | ZF          |      |
|                                        | XAX     | Exchange AC with DP <sub>X</sub>                                                             | 0                   | ſ                                     | 0              | 0                   | 0                   | 0                   | 1=                  | 0                   | 1               | 1                | $(AC) \leftrightarrow (DP_X)$                                                                                                                                  | Exchange the contents of AC and DP <sub>X</sub> .                             |             |      |
|                                        | TAY     | Transfer AC to DPy                                                                           | 1<br>1              | 12                                    | 0<br>1         | 0<br>1              | 1                   | 1,**<br>0           | 1<br>1              | 1<br>1              | 2               | 2                | $DP_Y \leftarrow (AC)$                                                                                                                                         | Transfer the contents of AC to DP <sub>Y</sub> .                              |             |      |
|                                        | TYA     | Transfer DRy to<br>AC                                                                        | 1                   | ተ <sup>የ</sup><br>1                   | 0<br>1         | 0<br>Ø              | <b>1</b><br>0       | 1<br>0              | 1<br>1              | 1<br>1              | 2               | 2                | $AC \leftarrow (DP_Y)$                                                                                                                                         | Transfer the contents of DP <sub>Y</sub> to AC.                               | ZF          |      |
|                                        | XAY     | Exchange AC with DP <sub>Y</sub>                                                             | 0                   | 1                                     | Ø              | Ő                   | 0                   | 0                   | 1                   | 1                   | 1               | 1                | $(AC) \leftrightarrow (DP_Y)$                                                                                                                                  | Exchange the contents of AC and DP <sub>Y</sub>                               |             |      |
| pulation                               | SFB n4  | Set fleg bit                                                                                 | O. Art              | 1                                     | 1              | 1                   | n <sub>3</sub>      | n <sub>2</sub>      | n <sub>1</sub>      | n <sub>0</sub>      | 1               | 1                | Fn ← 1                                                                                                                                                         | Set the flag specified by n4 to 1.                                            |             |      |
| Flag manipulation instructions         | RFB.n4  | Reset flag bit                                                                               | 0                   | 0                                     | 1              | 1                   | n <sub>3</sub>      | n <sub>2</sub>      | n <sub>1</sub>      | n <sub>0</sub>      | 1               | 1                | Fn ← 0                                                                                                                                                         | Clear the flag specified by n4 to 0.                                          | ZF          |      |

Continued from preceding page.

| Instruction<br>group             | _             |                                                                     |                     |                     | Inst                | ructi               | on co                             | ode                               |                                  |                                  | Number of bytes            | Number of cycles |                                                                                                                                                                                                                                  |                                                                                                                                                                          | Affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|----------------------------------|---------------|---------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Instruc<br>group                 | l v           | Mnemonic                                                            | D <sub>7</sub>      | D <sub>6</sub>      | D <sub>5</sub>      | $D_4$               | D <sub>3</sub>                    | D <sub>2</sub>                    | D <sub>1</sub>                   | D <sub>0</sub>                   | Numb<br>bytes              | Numb<br>cycle    | Operation                                                                                                                                                                                                                        | Description                                                                                                                                                              | status bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note |
|                                  | JMP addr      | Jump in the current bank                                            | 1<br>P <sub>7</sub> | 1<br>P <sub>6</sub> | 1<br>P <sub>5</sub> | 0<br>P <sub>4</sub> | P <sub>11</sub><br>P <sub>3</sub> | P <sub>10</sub><br>P <sub>2</sub> | P <sub>9</sub><br>P <sub>1</sub> | P <sub>8</sub> P <sub>0</sub>    | 2                          | 2                | $\begin{array}{l} PC12 \leftarrow PC12 \\ PC11 \text{ to } 0 \leftarrow \\ P_{11} \text{ to } P_{0} \end{array}$                                                                                                                 | Jump to the location in the same bank specified by the immediate data P12.                                                                                               | All Andreas An | 8    |
|                                  | JPEA          | Jump to the<br>address stored at<br>E and AC in the<br>current page | 0                   | 0                   | 1                   | 0                   | 0                                 | 1                                 | 1                                | 1                                | 1                          | 1                | PC12 to PC8 ← PC12 to PC8 PC7 to 4 ← (E) PC3 to 0 ← (AC)                                                                                                                                                                         | Jump to the location<br>determined by replacing the<br>lower 8 bits of the PC<br>by E, AC                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                  | CAL addr      | Call subroutine                                                     | 0<br>P <sub>7</sub> | 1<br>P <sub>6</sub> | 0<br>P <sub>5</sub> | 1<br>P <sub>4</sub> | 0<br>P <sub>3</sub>               | P <sub>10</sub><br>P <sub>2</sub> | P <sub>9</sub><br>P <sub>1</sub> | P <sub>8</sub> P <sub>0</sub>    | 2                          | 2                | PC12, 11 $\leftarrow$ 0<br>PC10 to 0 $\leftarrow$<br>P <sub>10</sub> to P <sub>0</sub><br>M4 (SP) $\leftarrow$ (CF, ZF,<br>PC12 to 0)<br>SP $\leftarrow$ (SP) $-$ 4                                                              | Cally a subroutine.                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| nstructions                      | CZP addr      | Call subroutine in the zero page                                    | 1                   | 0                   | 1                   | 0                   | P <sub>3</sub>                    | P <sub>2</sub>                    | P <sub>1</sub>                   | P <sub>0</sub>                   | 1                          | 2                | $\begin{array}{l} \text{PC 12' to 0,} \\ \text{PO 1 to 0} \leftarrow 0 \\ \text{PC 5 to 2} \leftarrow P_3 \text{ to P}_0 \\ \text{M4' (SP)} \leftarrow \text{(CF, ZF, PC 12 to 0)} \\ \text{SP} \leftarrow \$P - 4' \end{array}$ | Call a subroutine on page 0 in bank 0,                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| outine ir                        | BANK          | Change bank                                                         | 0                   | 0                   | 0                   | 1                   | 1                                 | 0                                 | 1                                | 1                                | <b>1</b> <sub>2</sub> 24 4 | 1                |                                                                                                                                                                                                                                  | Change the memory bank and register bank.                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Jump and subroutine instructions | PUSH reg      | Push reg on<br>M2 (SP)                                              | 1 1                 | 1                   |                     | 0                   | 1 1                               | 1<br>i                            | 1,                               | 1 0                              | Ź                          | 2                | $M_2$ (SP) $\leftarrow$ (reg) $SP \leftarrow$ (SP) $\stackrel{?}{\sim} 2$                                                                                                                                                        | Store the contents of reg in M2 (SP). Subtract 2 from SP after the store.    reg   i_1   i_0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                  | POP reg       | Pop reg off<br>M2 (SP)                                              | 1 1                 | 1 13                | 0                   | 0 0                 | 1                                 | Î.                                | 1<br>i <sub>0</sub>              | 1.0                              | 2                          | 2                | SP ← (SP) + 2<br>reg ← [M2 (SP)]                                                                                                                                                                                                 | Add 2 to SP and then load the contents of M2 (SP) into reg. The relation between i <sub>1</sub> i <sub>0</sub> and reg is the same as that for the PUSH reg instruction. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                  | RT            | Return from subroutine                                              | 0,                  | 0                   | 0                   | À                   | 1                                 | ì                                 | 0                                | 0                                | 1,10                       | 2                | SP ← (SP) + 4<br>PC ← [M4 (SP)]                                                                                                                                                                                                  | Return from a subroutine or interrupt handling routine. ZF and CF are not restored.                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                  | RTI           | Return from interrupt routine                                       | 0,                  | 0                   | 0                   | 1                   | 1                                 | 1                                 | 0                                | A                                | 1                          | 2                | $\begin{array}{l} SP \leftarrow (SP) + 4 \\ PC \leftarrow [M4 \ (SP)] \\ CF, ZF \leftarrow [M4 \ (SP)] \end{array}$                                                                                                              | Return from a subroutine or interrupt handling routine. ZF and CF are restored.                                                                                          | ZF, CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                                  | BAt2 addr     | Branch on AC bit                                                    | 1<br>P <sub>7</sub> | 1<br>P <sub>6</sub> | 0<br>P <sub>5</sub> | 1<br>P <sub>4</sub> | 0<br>P <sub>3</sub>               | 0<br>P <sub>2</sub>               | t <sub>1</sub><br>P <sub>1</sub> | t <sub>0</sub><br>P <sub>0</sub> | 2                          | 2                | P <sub>4</sub> P <sub>3</sub> P <sub>2</sub><br>P <sub>1</sub> P <sub>0</sub>                                                                                                                                                    | Branch to the location in the same page specified by $P_0$ to $P_7$ if the bit in AC specified by the immediate data $t_1$ $t_0$ is one.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Branch instructions              | MNAt2         | Branch on no AC bit                                                 | 1<br>P <sub>7</sub> | 0<br>P6             | 0<br>P <sub>5</sub> | 1<br>P <sub>4</sub> | 0<br>P <sub>3</sub>               | 0<br>P <sub>2</sub>               | t <sub>1</sub><br>P <sub>1</sub> | t <sub>0</sub><br>P <sub>0</sub> | 2                          | 2                | $\begin{array}{c} \text{PC7 to 0} \leftarrow \text{P}_7\text{P}_6\text{P}_5 \\ \text{P}_4\text{P}_3\text{P}_2 \\ \text{P}_1\text{P}_0 \\ \text{if (AC, t2)} \\ = 0 \end{array}$                                                  | Branch to the location in the same page specified by $P_0$ to P7 if the bit in AC specified by the immediate data $t_1$ $t_0$ is zero.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Branch in                        | BMt2 addr     | Branch on M bit                                                     | 1<br>P <sub>7</sub> | 1<br>P <sub>6</sub> |                     | 1<br>P <sub>4</sub> |                                   | 1<br>P <sub>2</sub>               |                                  |                                  | 2                          | 2                | $\begin{array}{c} \text{PC7 to 0} \leftarrow \text{P}_7  \text{P}_6  \text{P}_5 \\ \text{P}_4  \text{P}_3  \text{P}_2 \\ \text{P}_1  \text{P}_0 \\ \text{if [M (HL),} \\ \text{12] = 1} \end{array}$                             | Branch to the location in the same page specified by $P_0$ to $P_7$ if the bit in M (HL) specified by the immediate data $t_1$ $t_0$ is one.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                  | BNMt2<br>addr | Branch on no M<br>bit                                               |                     | 0<br>P <sub>6</sub> |                     |                     | 0<br>P <sub>3</sub>               | 1<br>P <sub>2</sub>               |                                  |                                  | 2                          | 2                | $\begin{array}{c} \text{PC7 to 0} \leftarrow \text{P}_7  \text{P}_6  \text{P}_5 \\ \text{P}_4  \text{P}_3  \text{P}_2 \\ \text{P}_1  \text{P}_0 \\ \text{if [M (HL),} \\ \text{t2] = 0} \end{array}$                             | Branch to the location in the same page specified by $P_0$ to $P_7$ if the bit in M (HL) specified by the immediate data $t_1$ $t_0$ is zero.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

Note: 8. This becomes PC12 + (PC12) immediately following a BANK instruction.

Continued from preceding page.

| Instruction<br>group |               |                                              | Instructi                                                              | ion code                                                                                                                   | oer of        | Number of cycles |                                                                                                                                                                                                    |                                                                                                                                                                                                    | Affected    |      |
|----------------------|---------------|----------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Instrugroup          | , n           | Mnemonic                                     | D <sub>7</sub> D <sub>6</sub> D <sub>5</sub> D <sub>4</sub>            | D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub>                                                                | Numb<br>bytes | Numk             | Operation                                                                                                                                                                                          | Description                                                                                                                                                                                        | status bits | Note |
|                      | BPt2 addr     | Branch on port bit                           | 1 1 0 1<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> | 1 0 t <sub>1</sub> t <sub>0</sub><br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>                           | 2             | 2                | $\begin{array}{c} \text{PC7 to } 0 \leftarrow P_7  P_6  P_5 \\ P_4  P_3  P_2 \\ P_1  P_0 \\ \text{if } [P \\ (DP_L),  t2] \\ = 1 \end{array}$                                                      | Branch to the location in the same page specified by $P_0$ to $P_7$ if the bit in port (DP <sub>L</sub> ) specified by the immediate data $\frac{1}{1}$ to is one.                                 |             | 9    |
|                      | BNPt2<br>addr | Branch on no port bit                        | 1 0 0 1<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> | 1 0 t <sub>1</sub> t <sub>0</sub><br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>                           | 2             | 2                | $\begin{array}{c} \text{PC7 to 0} \leftarrow \text{P}_7  \text{P}_6  \text{P}_6 \\ \text{P}_4  \text{P}_3  \text{P}_2 \\ \text{P}_1  \text{P}_0 \\ \text{if IP} \\ \text{(DP}_1), 12] \end{array}$ | Branch to the location in the same page specified by P <sub>0</sub> to P <sub>7</sub> if the bit in port (DP <sub>L</sub> ) specified by the immediate data t <sub>P</sub> t <sub>0</sub> is zero. |             | 9    |
|                      | BC addr       | Branch on CF                                 |                                                                        | 1 1 0 0<br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>                                                     | 2             | 2                | P₁ R₀<br>#(CF)<br>€1                                                                                                                                                                               | Branch to the location in the same page specified by P <sub>0</sub> to P <sub>7</sub> if CF is one.                                                                                                |             |      |
| Branch instructions  | BNC addr      | Branch on no CF                              |                                                                        | 1 1 0 0<br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>                                                     | 2             | 2                | $\begin{array}{c} PC7 \text{ to } 0 + P_7  P_6  P_8 \\ P_4  P_3  P_2 \\ P_1  P_6 \\ if  (CF) \\ = \emptyset \end{array}$                                                                           | Branch to the location in the same page specified by P <sub>0</sub> to P <sub>2</sub> if CF is zero.                                                                                               |             |      |
| Branch               | BZ addr       | Branch on ZF                                 | 1 1 0 1<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> | 1 1 0 11<br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>                                                    | 2             | 2                | $\begin{array}{c} \text{PCV id} \ 0 \leftarrow P_7 \ P_6 \ P_5 \\ P_4 \ P_3 \ P_2 \\ P_1 \ P_0 \\ \text{if } \ (2F) \\ & = 1 \end{array}$                                                          | Branch to the location in the same page specified by $P_0$ to $P_7$ if ZF is one.                                                                                                                  |             |      |
|                      | BNZ addr      | Branch on no ZF                              | 1 0 0 1<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> | 1 1 0 1<br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>                                                     | 2             | 2                | $P_7 P_6 P_5$<br>$P_4 P_3 P_2$<br>$P_1 P_0$<br>if (ZF)<br>$P_0 P_1 P_0$                                                                                                                            | Branch to the location in the same page specified by $P_0$ to $P_7$ if ZF is zero.                                                                                                                 |             |      |
|                      | BFn4 addr     | Branch on flag bit                           | 1 1 1 1 1 P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub>  | n <sub>3</sub> n <sub>2</sub> n <sub>1</sub> n <sub>0</sub><br>P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> | 2             | 2                | P.C7 to $0 \leftarrow P_7 P_6 P_5$<br>$P_4 P_3 P_2$<br>$P_1 P_0$<br>if (Fn)<br>= 1                                                                                                                 | Branch to the location in the same page specified by $P_0$ to $P_7$ if the flag (of the 16 user flags) specified by $n_3$ $n_2$ $n_1$ $n_0$ is one.                                                |             |      |
|                      | BNFn4<br>addr | Branch on no flag                            | 1 0 1 1<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> R <sub>4</sub> | n <sub>3</sub> n <sub>2</sub> n <sub>1</sub> n <sub>0</sub> P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>    | 2             | 2                | $\begin{array}{c} \text{PC7 to 0} \leftarrow \text{P}_7  \text{P}_6  \text{P}_5 \\ \text{P}_4  \text{P}_3  \text{P}_2 \\ \text{P}_1  \text{P}_0 \\ \text{if (Fn)} \\ = 0 \end{array}$              | Branch to the location in the same page specified by $P_0$ to $P_7$ if the flag (of the 16 user flags) specified by $n_3$ $n_2$ $n_1$ $n_0$ is zero.                                               |             |      |
|                      | IP0           | Input port 0 to AC                           | 0 0 1 0                                                                | 0 0 0 0                                                                                                                    | 1             | 1                | AC ← (P0)                                                                                                                                                                                          | Input the contents of port 0 to AC.                                                                                                                                                                | ZF          |      |
|                      | IP            | Input port to AC                             | 0 0 1 0                                                                | 0/1 1 0                                                                                                                    | 1             | 1                | AC ← [P (DP <sub>L</sub> )]                                                                                                                                                                        | Input the contents of port P (DP <sub>I</sub> ) to AC.                                                                                                                                             | ZF          |      |
|                      | IPM ,         | Input port to M                              | 0 0 0 1                                                                | 1 0 0 1                                                                                                                    | 1             | 1                | $M (HL) \leftarrow [P (DP_L)]$                                                                                                                                                                     | Input the contents of port P (DP <sub>L</sub> ) to M (HL).                                                                                                                                         |             |      |
|                      | IPDR/14       | Input port to AG direct                      | 1 1 0 0<br>0 1 1 0                                                     | 1 1 1 1 1 1 1 <sub>3</sub> 1 <sub>2</sub> 1 <sub>1</sub> 1 <sub>0</sub>                                                    | 2             | 2                | AC ← [P (i4)]                                                                                                                                                                                      | Input the contents of P (i4) to AC.                                                                                                                                                                | ZF          |      |
| /Q instructions      | /IP45         | Input port 4, 5 to E, AC respectively        | 1 1 0 0<br>1 1 0 1                                                     | 1 1 1 1 1 0 1 0 0                                                                                                          | 2             | 2                | $E \leftarrow [P (4)]$ $AC \leftarrow [P (5)]$                                                                                                                                                     | Input the contents of ports P (4) and P (5) to E and AC respectively.                                                                                                                              |             |      |
| <u>Q</u> ,           | OP            | Output AC to port                            | 0 0 1 0                                                                | 0 1 0 1                                                                                                                    | 1             | 1                | $P (DP_L) \leftarrow (AC)$                                                                                                                                                                         | Output the contents of AC to port P (DP <sub>L</sub> ).                                                                                                                                            |             |      |
|                      | OPM           | Output M to port                             | 0 0 0 1                                                                | 1 0 1 0                                                                                                                    | 1             | 1                | $P\;(DP_L) \leftarrow [M\;(HL)]$                                                                                                                                                                   | Output the contents of M (HL) to port P (DP <sub>L</sub> ).                                                                                                                                        |             |      |
|                      | OPDR i4       | Output AC to port direct                     | 1 1 0 0<br>0 1 1 1                                                     | 1 1 1 1 1 1 1 <sub>3</sub> 1 <sub>2</sub> 1 <sub>1</sub> 1 <sub>0</sub>                                                    | 2             | 2                | P (i4) ← (AC)                                                                                                                                                                                      | Output the contents of AC to P (i4).                                                                                                                                                               |             |      |
|                      | OP45          | Output E, AC to<br>port 4, 5<br>respectively | 1 1 0 0 1                                                              | 1 1 1 1 0 1                                                                                                                | 2             | 2                | P (4) ← (E)<br>P (5) ← (AC)                                                                                                                                                                        | Output the contents of E and AC to ports P (4) and P (5) respectively.                                                                                                                             |             |      |

Note: 9. Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.

## Continued from preceding page.

| Instruction<br>group           |                  |                                          |                     | l                   | Instr               | ucti                | on co               | ode                 |                      |                     | Number of bytes | oer of   | On another                                                                                              | Description                                                                                                                                                                                                                 | Affected          | Noto |
|--------------------------------|------------------|------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|-----------------|----------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| Instruc<br>group               | Mnemonic         |                                          | D <sub>7</sub>      | $D_6$               | D <sub>5</sub>      | D <sub>4</sub>      | $D_3$               | D <sub>2</sub>      | D <sub>1</sub>       | $D_0$               | Numb<br>bytes   | Number o | Operation                                                                                               | Description                                                                                                                                                                                                                 | status bits       | Note |
| I/O instructions               | SPB t2           | Set port bit                             | 0                   | 0                   | 0                   | 0                   | 1                   | 0                   | t <sub>1</sub>       | t <sub>0</sub>      | 1               | 1        | [P (DP <sub>L</sub> ), t2] ← 1                                                                          | Set to one the bit in port P (DP <sub>L</sub> ) specified by the immediate data t <sub>110</sub> .                                                                                                                          | Carl Barrell Lang |      |
|                                | RPB t2           | Reset port bit                           | 0                   | 0                   | 1                   | 0                   | 1                   | 0                   | t <sub>1</sub>       | t <sub>0</sub>      | 1               | 1        | [P (DP <sub>L</sub> ), t2] ← 0                                                                          | Clear to zero the bit in port P (DPL) specified by the immediate data t <sub>1</sub> t <sub>0</sub> .                                                                                                                       | ZF                |      |
|                                | ANDPDR<br>i4, p4 | And port with immediate data then output | 1<br>I <sub>3</sub> | 1<br>I <sub>2</sub> | 0<br>I <sub>1</sub> | 0<br>I <sub>0</sub> | 0<br>P <sub>3</sub> | 1<br>P <sub>2</sub> | 0<br>P <sub>1</sub>  | 1<br>P <sub>0</sub> | 2               | 2        | P (P <sub>3</sub> to P <sub>0</sub> ) $\leftarrow$ [P (P <sub>3</sub> to 0)] $\vee$ I <sub>3 to 0</sub> | Take the logical and of P ( $P_3$ to $P_0$ ) and the immediate data $P_3$ $P_4$ $P_0$ and output the result to P ( $P_3$ to $P_0$ ).                                                                                        | ŽF                |      |
|                                | ORPDR<br>i4, p4  | Or port with immediate data then output  | 1<br>I <sub>3</sub> | 1<br>I <sub>2</sub> | 0<br>I <sub>1</sub> | 0<br>I <sub>0</sub> | 0<br>P <sub>3</sub> | 1<br>P <sub>2</sub> | 0<br>P <sub>1</sub>  | 0<br>P <sub>0</sub> | 2               | 2        | P (P <sub>3</sub> to P <sub>0</sub> ) ← [P (P <sub>3</sub> to 0)] ∨ I <sub>3 to 0</sub>                 | Take the logical or of $\mathbb{R}'(\mathbb{P}_3')$ to $\mathbb{P}_0$ and the immediate data $\mathbb{I}_3 \mathbb{I}_2 \mathbb{I}_4 \mathbb{I}_0$ and output the result to $\mathbb{P}(\mathbb{P}_3)$ to $\mathbb{P}_0$ ). | ZF                |      |
| Timer control instructions     | WTTM0            | Write timer 0                            | 1                   | 1                   | 0                   | 0                   | 1                   | 0                   | 1                    | 0                   | 1               | 2        | TIMERO ← [M2 (HL)];<br>(AC)                                                                             | Write the contents of M2 (HL),<br>AC into the timer 0 reload<br>register.                                                                                                                                                   |                   |      |
|                                | WTTM1            | Write timer 1                            | 1                   | 1                   | 0                   | 0                   | 1 0                 | 1                   | 1<br>0               | 1 0                 | 2               | 2        | TIMER1 ← (E); (AC)                                                                                      | Write the contents of E, AC into the timer 1 reload register A.                                                                                                                                                             |                   |      |
|                                | RTIM0            | Read timer 0                             | 1                   | 1                   | 0                   | 0                   | 1                   | 0                   | 1                    | 1                   | 1               | 2        | M2 (HL), AC ←<br>(TIMER0)                                                                               | Read out the contents of the timer 0 counter into M2 (HL), AC.                                                                                                                                                              |                   |      |
|                                | RTIM1            | Read timer1                              | 1                   | 1<br>1              | 0<br>1              | 0<br>1              | 1<br>0              | 1<br>1              | 1                    | # 1.25°<br>#1       | 2               | 2        | E, AC ← (TIMER1)                                                                                        | Read out the contents of the timer 1 counter into E, AC.                                                                                                                                                                    |                   |      |
|                                | START0           | Start timer 0                            | 1                   | 1                   | 0<br>1              | 0<br>0              | 1                   | 1."<br>             | 1                    | 1                   | 2               | 2        | Start timer 0 counter                                                                                   | Start the timer 0 counter.                                                                                                                                                                                                  |                   |      |
|                                | START1           | Start timer 1                            | 1                   | 1<br>1              | 0<br>1              | 0                   | 1<br>0              | ์<br>1              | 1<br>1 s             | 1                   | 2               | 2        | Start timer 1 counter                                                                                   | Start the timer 1 counter.                                                                                                                                                                                                  |                   |      |
|                                | STOP1            | Stop timer 0                             | 1                   | 1                   | 0                   | 0                   | / 1<br>0            | 1                   | 1                    | 1<br>0              | 2               | 2        | Stop timer 0 counter                                                                                    | Stop the timer 0 counter.                                                                                                                                                                                                   |                   |      |
|                                | STOP1            | Stop timer 1                             | 1<br>1              | 1<br>1,4            |                     | 0<br>1              | 1<br>0              | 1 \<br>1            | 1<br>1               | 1                   | 2               | 2        | Stop timer 1 counter                                                                                    | Stop the timer 1 counter.                                                                                                                                                                                                   |                   |      |
| Interrupt control instructions | MSET             | Set interrupt master enable flag         | 1                   | /1/<br>/1           | 0                   | 0 (<br>1)           | 1<br>0              | 1<br>.0             | 0<br>0               | 1                   | 2               | 2        | MSE ← 1                                                                                                 | Set the interrupt master enable flag to one.                                                                                                                                                                                |                   |      |
|                                | MRESET           | Reset interrupt master enable flag       | 1                   | 1                   | 0<br>0              |                     | 1<br>0              | 1<br>0              | 0                    | 1<br>0,             | 2               | 2        | MSE ← 0                                                                                                 | Clear the interrupt master enable flag to zero.                                                                                                                                                                             |                   |      |
|                                | EIH i4           | Enable interrupt //                      | 1<br>0 ,            | 1                   | 0<br>0              | 0                   | 1<br>la             | 1<br>I <sub>2</sub> | 0<br>I₃ř             | A<br>Jó             | 2               | 2        | EDIH ← (EDIH) ∨ i4                                                                                      | Set the interrupt enable flag to one.                                                                                                                                                                                       |                   |      |
|                                | EIL i4           | Enable interrupt<br>low                  | 1<br>0              | 1**<br>*1;          | 0                   | 0                   | 1<br>I <sub>3</sub> | 1<br> 2             | 0.<br>1 <sub>1</sub> | 1<br>I <sub>0</sub> | 2               | 2        | EDIL ← (EDIL) ∨ i4                                                                                      | Set the interrupt enable flag to one.                                                                                                                                                                                       |                   |      |
|                                | DIH i4           | Disable interrupt high                   | 1                   |                     | 0                   | 0                   | 1                   | 1<br>1 <sub>2</sub> | 0<br>I <sub>1</sub>  | 1<br>I <sub>0</sub> | 2               | 2        | $EDIH \leftarrow (EDIL) \land \ \overline{i4}$                                                          | Clear the interrupt enable flag to zero.                                                                                                                                                                                    | ZF                |      |
|                                | DIL i4           | Disable interrupt<br>low                 | 1                   | 1 0                 | 0                   | 0                   | l <sub>3</sub>      | 1<br>I <sub>2</sub> | 0<br>I <sub>1</sub>  | 1<br>I <sub>0</sub> | 2               | 2        | $EDIL \leftarrow (EDIL) \ \land \ \overline{i4}$                                                        | Clear the interrupt enable flag to zero.                                                                                                                                                                                    | ZF                |      |
|                                | WTSP             | Write SP                                 | 1                   | 1<br>1              | 0<br>0              | 0                   | 1                   | 1                   | 1                    | 1                   | 2               | 2        | $SP \leftarrow (E), (AC)$                                                                               | Transfer the contents of E, AC to SP.                                                                                                                                                                                       |                   |      |
|                                | R\$P             | Read SP                                  | 1                   | 1                   | 0                   | 0                   | 1                   | 1                   | 1                    | 1                   | 2               | 2        | $E,AC \leftarrow (SP)$                                                                                  | Transfer the contents of SP to E, AC.                                                                                                                                                                                       |                   |      |
| Standby control instructions   | HALT             | HALT                                     | 1,4                 | 1<br>1              | 0                   | 0                   | 1                   | 1                   | 1                    | 1                   | 2               | 2        | HALT                                                                                                    | Enter halt mode.                                                                                                                                                                                                            |                   |      |
|                                | HOLD             | HOLD                                     | 1                   | 1                   | 0                   | 0                   | 1                   | 1                   | 1                    | 1                   | 2               | 2        | HOLD                                                                                                    | Enter HOLD mode.                                                                                                                                                                                                            |                   |      |

Continued from preceding page.

| Instruction<br>group          | Mnemonic |                 | Instruction code |                  |                |                |                                                             |        |                     |                     | oer of          | s s             |                 | 2                                                           | Affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N    |
|-------------------------------|----------|-----------------|------------------|------------------|----------------|----------------|-------------------------------------------------------------|--------|---------------------|---------------------|-----------------|-----------------|-----------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Instruc                       |          |                 | D <sub>7</sub> 1 | D <sub>6</sub> 1 | D <sub>5</sub> | D <sub>4</sub> | D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub> |        |                     | D <sub>0</sub>      | Number<br>bytes | Numbe<br>cycles | Operation       | Description                                                 | status bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note |
| control                       | STARTS   | Start serial IO | 1                | 1<br>1           | 0<br>1         | 0              | 1<br>1                                                      | 1<br>1 | 1<br>1              | 1<br>0              | 2               | 2               | START SI O      | Start SIO operation:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Serial I/O co<br>instructions | WTSIO    | Write serial IO | 1                | 1<br>1           | 0<br>1         | 0              | 1<br>1                                                      | 1<br>1 | 1<br>1              | 1<br>1              | 2               | 2               | SIO ← (E), (AC) | Write the contents of E, AÇ to SIO.                         | The state of the s |      |
|                               | RSIO     | Read serial IO  | 1                | 1<br>1           | 0<br>1         | 0<br>1         | 1<br>1                                                      | 1<br>1 | 1<br>1              | 1<br>1              | 2               | 2               | E, AC ← (SIO)   | Read the contents of SIO into E, AC                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Other<br>instructions         | NOP      | No operation    | 0                | 0                | 0              | 0              | 0                                                           | 0      | 0                   | 0                   | 1               | 1               | No operation    | Consume one machine cycle without performing any operation. | A Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Other                         | SB i2    | Select bank     | 1<br>1           | -                | 0<br>0         | 0              | 1<br>0                                                      | 1<br>0 | 1<br>I <sub>1</sub> | 1<br>I <sub>0</sub> | 2               | 2               | PC12 ← I 10     | Specify the memory bank.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1998. Specifications and information herein are subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.