
Monolithic Digital IC

Package Dimensions

unit: mm

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} 1 max		7	V
Maximum supply voltage 2	V _{CC} 2 max		8.5	V
Maximum supply voltage 3	VS_C max	Capstan motor driver	7.0	V
Maximum supply voltage 4	VS_D max	Drum motor driver	7.0	V
Maximum supply voltage 5	VS_L max	Loading motor driver	7.0	V
Applied output voltage	Vo max		8.0	V
Applied input voltage	VI1 max	Control circuits	-0.3 to V _{CC} 1 + 0.3	V
	VI2 max	U, V, W, COM	8.0	V
Capstan motor output current	IOC max		1.0	А
Drum motor output current	IOD max		1.0	А
Loading motor output current	IOL max		0.6	А
Allowable power dissipation	Pd max	IC only	0.6	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage 1	V _{CC} 1	$V_{CC}1 \le V_{CC}2$	2.7 to 6.0	V
Power supply voltage 2	V _{CC} 2		3.5 to 8.5	V
Power supply voltage 3	VS_C	$VS_C \le V_{CC}^2$	to 7.0	V
Power supply voltage 4	VS_D	$VS_D \le V_{CC}^2$	to 7.0	V
Power supply voltage 5	VS_L	$VS_L \le V_{CC}^2$	2.2 to 7.0	V
Hall input amplitude	VHALL	Capstan motor	±20 to ±80	mVp–p

Allowable Operating Ranges at Ta = $25^{\circ}C$

$\label{eq:constant} \textit{Electrical Characteristics/Capstan Motor Driver Block at Ta = 25^{\circ}C, V_{CC}1 = 3V, V_{CC}2 = 4.75V, V_S = 1.5V, V_S = 1.5V,$

ParameterSymbolConditionsmintypVec1 power supply currentlcc1lout = 100 mAVSTBY_C = 3V48mAxVec2 power supply currentlcc2lout = 100 mAVSTBY_C = 3V612mAxVec2 idle currentlcc1QVSTBY_C = 0V2.14mAVcc2 idle currentlcc2QVSTBY_C = 0V100 μ AVs idle currentlscQVSTBY_C = 0V75100 μ AVs idle currentlsQVSTBY_C = 0V75100 μ ALower side residual voltageVXL1lout = 0.2A0.150.220.29VQuer side residual voltageVXL1lout = 0.5A0.250.40VOutput saturation voltageVosatlout = 0.5A0.250.40VOutput saturation voltageVNL2lout = 0.5A0.250.40VOutput saturation voltageVNSatlout = 0.5A0.250.40VOutput saturation voltageVNSatlout = 0.2ANote 2738087Minput/output voltage gainVGVHRangle = 20 k\OmegaNote 2738087%Minput/output voltageVSTHCasut0.952.1VVInput output voltageVSTHVSTBY_C = 3V0.952.1VMinput/output voltageVSTHVSTBY_C = 3V0.952.1VMinput/output voltageVSTHCasut <th></th> <th colspan="3"></th> <th colspan="3">Ratings</th> <th></th>					Ratings			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Parameter	Symbol	Conditions			max	Unit
Viscous Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V Lower side residual voltage VXL1 lout = 0.2A 0.15 0.20 0.25 V Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V Output saturation voltage VSL2 lout = 0.5A 0.25 0.40 V Overlap amount O.L RL = 39Ω × 3, Rangle = 20 kΩ Note 2 73 80 87 % Input offset voltage VHOFF Note 1 Design target value -5 4.55 mV Common mode input range VHCM Rangle = 20 kΩ 0.95 2.1 V Input output voltage gain VGVH Rangle = 20 kΩ 0.95 2.1 V Low level voltage VSTH	ent	Vcc1 power supply current	lcc1	lout = 100 mA VSTBY_C = 3V		4	8	mA
V Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V Lower side residual voltage VXL1 lout = 0.2A 0.15 0.20 0.25 V Lower side residual voltage VXL1 lout = 0.5A 0.25 0.40 V Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V Output saturation voltage VXL2 lout = 0.5A 0.25 0.40 V Overlap amount O.L RL = 39Ω × 3, Rangle = 20 kΩ Note 2 73 80 87 % Input offset voltage VHOFF Note 1 Design target value -5 +5 mV Common mode input range VHCM Rangle = 20 kΩ 0.95 2.1 V Input output voltage gain VGVH Rangle = 20 kΩ 0.95 2.1 V Low level voltage VSTH	curr	Vcc2 power supply current	lcc2	lout = 100 mA VSTBY_C = 3V		6	12	mA
V Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V Lower side residual voltage VXL1 lout = 0.2A 0.15 0.20 0.25 V Lower side residual voltage VXL1 lout = 0.5A 0.25 0.40 V Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V Output saturation voltage VXL2 lout = 0.5A 0.25 0.40 V Overlap amount O.L RL = 39Ω × 3, Rangle = 20 kΩ Note 2 73 80 87 % Input offset voltage VHOFF Note 1 Design target value -5 +5 mV Common mode input range VHCM Rangle = 20 kΩ 0.95 2.1 V Input output voltage gain VGVH Rangle = 20 kΩ 0.95 2.1 V Low level voltage VSTH	Ipply	Vcc1 idle current	lcc1Q	VSTBY_C = 0V		2.1	4	mA
Viscous Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V Lower side residual voltage VXL1 lout = 0.2A 0.15 0.20 0.25 V Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V Output saturation voltage VSL2 lout = 0.5A 0.25 0.40 V Overlap amount O.L RL = 39Ω × 3, Rangle = 20 kΩ Note 2 73 80 87 % Input offset voltage VHOFF Note 1 Design target value -5 4.55 mV Common mode input range VHCM Rangle = 20 kΩ 0.95 2.1 V Input output voltage gain VGVH Rangle = 20 kΩ 0.95 2.1 V Low level voltage VSTH	er su	Vcc2 idle current	lcc2Q	VSTBY_C = 0V			100	μΑ
NumberNumberNumberNumberNote Side residual voltageVXL1lout = 0.2A0.150.200.25VUpper side residual voltageVXL2lout = 0.5A0.250.40VLower side residual voltageVXL2lout = 0.5A0.250.40VOutput saturation voltageVosatlout = 0.8A, Sink + Source1.40VOverlap amountO.LRL = 390 × 3, Rangle = 20 kΩNote 2738087%Net offset voltageVHOFFNote 1 Design target value-5+5mVInput offset voltageVHOKRangle = 20 kΩ0.952.1VInput/output voltage gainVGVHRangle = 20 kΩ0.952.1VInput/output voltageVSTH2.5V _{CC1} VVLow level voltageVSTH-0.2+0.7VInput offset voltageVSTL-0.2+0.7VLeakage currentISTIKVSTBY_C = 3V50µALeakage currentIFRCINVFRC_C = 3V-0.2+0.4VInput currentIFRCINVFRC_C = 3V2030µALeakage currentIFRCINVFRC_C = 3V-0.2+0.4VInput offset voltageVFRCLFOC = 0V-30µAHall power supply voltageVHALLIH = 5 mA0.810.880.95V(O) pin voltageVFGOHIFGIN+ = VFGIN- = 1.5V-100+100nAOptic tipe tip	Pow	Vs idle current	IsQ	VSTBY_C = 0V		75	100	μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E E	Upper side residual voltage	VXH1	lout = 0.2A	0.15	0.22	0.29	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ś	Lower side residual voltage	VXL1	lout = 0.2A	0.15	0.20	0.25	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3	Upper side residual voltage	VXH2	lout = 0.5A		0.25	0.40	V
Overlap amountO.LRL = $39\Omega \times 3$, Rangle = $20 \ k\Omega$ Note 2738087%Input offset voltageVHOFFNote 1 Design target value-5+5mVCommon mode input rangeVHCMRangle = $20 \ k\Omega$ 0.952.1VInput/output voltage gainVGVHRangle = $20 \ k\Omega$ 0.952.1VInput/output voltage gainVGVHRangle = $20 \ k\Omega$ 24.527.530.5dBInput/output voltageVSTH2.5V _{CC} 1VLow level voltageVSTL-0.2+0.7VInput currentISTINVSTBY_C = $3V$ 50 μ ALeakage currentISTLKVSTBY_C = $0V$ -30 μ AHigh level voltageVFRCH2.5V _{CC} 1VLow level voltageVFRCH2.5V _{CC} 1VLow level voltageVFRCL-0.2+0.4VLakage currentIFRCINVFRC_C = $3V$ 2030 μ AHigh level voltageVHCHIFRCLKVFRC_C = $0V$ -30 μ AHall power supply voltageVHALLIH = $5 \ m$ A0.810.880.95VInput offset voltageVFGOFF-3+3mVmVInput offset voltageVFGOFF-3-3+3mVInput offset voltageVFGOHVFGIN+=1.5V-100+110nAInput bias currentIbFGVFGIN+=VFGIN==1.5V-100+100nAInput bias	Ś	Lower side residual voltage	VXL2	lout = 0.5A		0.25	0.40	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Output saturation voltage	Vosat	lout = 0.8A, Sink + Source			1.40	V
$\begin{tabular}{ c c c c c c c } \hline Common mode input range VHCM Rangle = 20 k\Omega & 0.95 & 2.1 V \\ \hline Input/output voltage gain VGVH Rangle = 20 k\Omega & 24.5 27.5 30.5 dB \\ \hline Input/output voltage gain VGVH Rangle = 20 k\Omega & 24.5 27.5 30.5 dB \\ \hline Input/output voltage VSTH & 2.5 V_{CC}1 V \\ \hline Low level voltage VSTL & -0.2 +0.7 V \\ \hline Input current ISTIN VSTBY_C = 3V & 50 \muA \\ \hline Leakage current ISTLK VSTBY_C = 0V & -30 \muA \\ \hline Input current ISTLK VSTBY_C = 0V & -30 \muA \\ \hline Input current IFRCIN VFRC_C = 3V & 20 30 \muA \\ \hline Low level voltage VFRCL & -0.2 +0.4 V \\ \hline Low level voltage VFRCL & -0.2 +0.4 V \\ \hline Low level voltage VFRCL & -0.2 +0.4 V \\ \hline Input current IFRCIN VFRC_C = 3V & 20 30 \muA \\ \hline Hall power supply voltage VHALL IH = 5 mA & 0.81 0.88 0.95 V \\ \hline (-) pin voltage VFGOFF & -3 +3 mV \\ \hline Input offset voltage VFGOFF & -3 +3 mV \\ \hline Input bias current IbFG VFGIN+ = VFGIN- = 1.5V & -100 +100 nA \\ \hline Common mode input range VFGOM With internal pull-up & 2.8 V \\ \hline Uw level output voltage VFGOL With internal pull-up & 0.2 V \\ \hline Voltage gain VGFG Note 1 Design target value & 100 dB \\ \hline \end{tabular}$					73	80	87	%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ifier	Input offset voltage	VHOFF	Note 1 Design target value	-5		+5	mV
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ampl			Rangle = 20 k Ω	0.95		2.1	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hall	Input/output voltage gain	VGVH	Rangle = 20 k Ω	24.5	27.5	30.5	dB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Din	High level voltage	VSTH		2.5		V _{CC} 1	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	by p	<u> </u>	VSTL		-0.2		+0.7	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and	Input current	ISTIN				50	μΑ
$\frac{1}{100} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}$	Sta	Leakage current	ISTLK	VSTBY_C = 0V			-30	μΑ
$\begin{array}{ c c c c c c c c } \hline Pi & Pi$	_	High level voltage	VFRCH		2.5		V _{CC} 1	V
Leakage currentIFRCLKVFRC_C = 0V-30 μ AHall power supply voltageVHALLIH = 5 mA, VH(+) – VH(-)0.750.850.95V(-) pin voltageVH(-)IH = 5 mA0.810.810.880.95VInput offset voltageVFGOFF-3+3mVInput bias currentIbFGVFGIN+ = VFGIN- = 1.5V500nAInput bias current offset Δ IbFGVFGIN+ = VFGIN- = 1.5V-100+100Common mode input rangeVFGCM1.22.5VHigh level output voltageVFGOHWith internal pull-up2.8VLow level output voltageVFGOLWith internal pull-up0.2VVoltage gainVGFGNote 1 Design target value100dB	id C	Low level voltage	VFRCL		-0.2		+0.4	V
Leakage currentIFRCLKVFRC_C = 0V-30 μ A $Hall power supply voltageVHALLIH = 5 mA, VH(+) - VH(-)0.750.850.95V(-) pin voltageVH(-)IH = 5 mA0.810.810.880.95VInput offset voltageVFGOFF-3+3mVInput bias currentIbFGVFGIN+ = VFGIN- = 1.5V500nAInput bias current offset\DeltaIbFGVFGIN+ = VFGIN- = 1.5V-100+100Common mode input rangeVFGCM1.22.5VHigh level output voltageVFGOHWith internal pull-up2.8VLow level output voltageVFGOLWith internal pull-up0.2VVoltage gainVGFGNote 1 Design target value100dB$	14	Input current	IFRCIN			20	30	μΑ
Image: Second		Leakage current	IFRCLK					μΑ
Input offset voltageVFGOFF-3+3mVInput offset voltageVFGOFF-3+3mVInput bias currentIbFGVFGIN+ = VFGIN- = 1.5V500nAInput bias current offsetΔIbFGVFGIN+ = VFGIN- = 1.5V-100+100Common mode input rangeVFGCM1.22.5VHigh level output voltageVFGOHWith internal pull-up2.8VLow level output voltageVFGOLWith internal pull-up0.2VVoltage gainVGFGNote 1 Design target value100dB	Т			IH = 5 mA, VH(+) - VH(-)	0.75	0.85	0.95	-
Input bias currentIbFGVFGIN+ = VFGIN- = 1.5V500nAInput bias current offset $\Delta IbFG$ VFGIN+ = VFGIN- = 1.5V-100+100nACommon mode input rangeVFGCM1.22.5VHigh level output voltageVFGOHWith internal pull-up2.8VLow level output voltageVFGOLWith internal pull-up0.2VVoltage gainVGFGNote 1 Design target value100dB	>		VH(–)	IH = 5 mA	0.81	0.88	0.95	V
δ The put bias current offsetΔlbFGVFGIN+ = VFGIN- = 1.5V-100+100nACommon mode input rangeVFGCM1.22.5VHigh level output voltageVFGOHWith internal pull-up2.8VLow level output voltageVFGOLWith internal pull-up0.2VVoltage gainVGFGNote 1 Design target value100dB			VFGOFF		-3		+3	mV
P Low level output voltage VFGOL With internal pull-up 0.2 V Voltage gain VGFG Note 1 Design target value 100 dB				VFGIN+ = VFGIN- = 1.5V			500	nA
P Low level output voltage VFGOL With internal pull-up 0.2 V Voltage gain VGFG Note 1 Design target value 100 dB	ato	-	∆lbFG	VFGIN+ = VFGIN- = 1.5V	-100		+100	nA
Orgin Low level output voltage VFGOL With internal pull-up 0.2 V Voltage gain VGFG Note 1 Design target value 100 dB	par				1.2		2.5	-
Orgin Low level output voltage VFGOL With internal pull-up 0.2 V Voltage gain VGFG Note 1 Design target value 100 dB	Sor	· ·			2.8			
Voltage gain VGFG Note 1 Design target value 100 dB	U U						0.2	V
						100		dB
Output current (Sink) IFGOs At output pin "L" 5 mA		Output current (Sink)	IFGOs	At output pin "L"			5	mA

Note 1: Design target value, not measured

Note 2: The overlap amount specification is taken as the measurement specification.

Demonster	Cumbel Conditions	Ratings				
Parameter	Symbol	Conditions		typ	max	Unit
Power supply current 4	ICC2	IO = 76 mA VSTBY_D = 3V VSTBY_C = 0V		0.75	2.5	mA
Output idle current 4	ICC2Q	VSTBY D = VSTBY_C = 0V			100	μA
Output idle current 5	IS(D)Q	VSTBY D = VSTBY_C = 0V		100	300	μA
Output saturation voltage, upper side 1	VOU1	IO = 0.1A RF = 0.25Ω		0.3	0.5	V
Output saturation voltage, lower side 1	VOD1	IO = 0.1A RF = 0.25Ω		0.3	0.5	V
Output saturation voltage, upper side 2	VOU2	IO = 0.4A, VS = 3V RF = 0.25Ω		0.5	0.8	V
Output saturation voltage, lower side 2	VOD2	IO = 0.4A, VS = 3V RF = 0.25Ω		0.5	0.8	V
COM pin common mode input voltage range	VIC		0.3		V _{CC} 2-0.9	V
Standby pin High level voltage	VSTBYH		2		V _{CC} 1	V
Standby pin Low level voltage	VSTBYL		-0.2		+0.7	V
Standby pin input current	ISTBYH	VSTBY_D = 3V			50	μA
Standby pin leakage current	ISTBYL	VSTBY_D = 0V	-10			μA
FRC pin High level voltage	VFRCH		2		V _{CC} 1	V
FRC pin Low level voltage	VFRCL		-0.2		+0.7	V
FRC pin input current	IFRCI	VFRC_D = 3V			50	μA
FRC pin leakage current	IFRCL	VFRC_D = 0V	-10			μA
Slope pin source current ratio	RSOURCE	ICSLP1SOURCE/ICSLP2SOURCE	-15		+15	%
Slope pin sink current ratio	RSINK	ICSLP1SINK/ICSLP2SINK	-15		+15	%
CSLP1 source/sink current ratio	RCSLP1	ICSLP1SOURCE/ICSLP1SINK	-35		+15	%
CSLP2 source/sink current ratio	RCSLP2	ICSLP2SOURCE/ICSLP2SINK	-35		+15	%
Startup frequency	Freq	$Cosc = 0.1 \mu F$, OSC frequency (Target)		11.5		Hz
Phase delay-width	Dwidth	(Target)		30		deg
SELCSLP pin High level voltage	VSELH		2		V _{CC} 1	V
SELCSLP pin Low level voltage	VSELL		-0.2		+0.7	V
SELCSLP pin input current	ISELH	VSELCSLP = 3V			50	μΑ
SELCSLP pin leakage current	ISELL	VSELCSLP = 0V	-10			μA

Cylinder Motor Driver Block at Ta = 25° C, V_{CC}1 = 3V, V_{CC}2 = 4.75V, V_S = 3V

Note) Items shown to be "Target" are not measured.

FG/PG Amplifier Block at Ta = 25°C, $V_{CC}1$ = 3V, $V_{CC}2$ = 4.75V, V_S = 3V

5	Parameter Symbol Conditions		Ratings			11-21
Parameter			min	typ	max	Unit
[FG amplifier]				•	•	
Input offset voltage	VIO	(Target)		±1	±5	mA
Input bias current	IBIN-	(Target)			250	nA
Common mode input voltage range	VICOM	(Target)	1		2	V
Open loop gain	GVFG	f = 1 kHz (Target)		55		dB
Output ON voltage	VOL	At IO = 10 μA			0.4	V
Output OFF voltage	VOH	At IO = 10 μA	V _{CC} 1-0.5			V
Schmitt amplifier hysteresis width	VSHIS	(Target)		50		mV
Reference voltage	VREF		1.15	1.30	1.45	V
[PG amplifier]			1			
Input offset voltage	VIO	(Target)		±1	±5	mV
Input bias current	IBIN-	(Target)			250	nA
Common mode input voltage range	VICOM	(Target)	1		2	V
Open loop gain	GVPG	f = 1 kHz (Target)		55		dB
Output ON voltage	VOL	At IO = 10 μA			0.4	V
Output OFF voltage	VOH	At IO = 10 μA	V _{CC} 1–0.5			V
Schmitt amplifier hysteresis width	VSHIS	(Target)		50		mV

Note) Items shown to be "Target" are not measured.

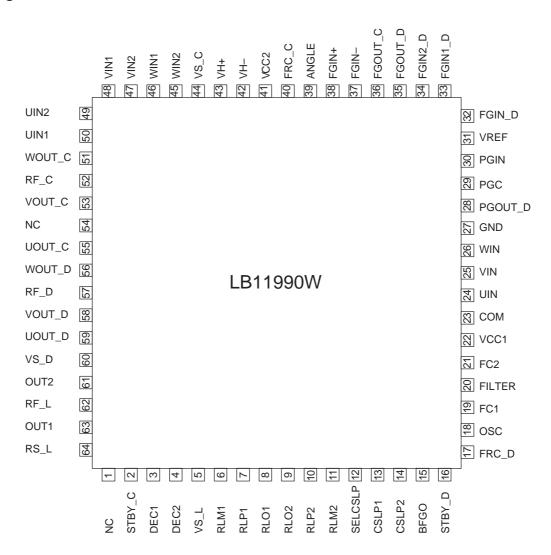
Loading Motor Driver	Block at Ta = 25° C	$V_{\rm CC} = 3V, V_{\rm CC}$	$V_{\rm CC}2 = 4.75 V, V_{\rm S} = 3 V$	
----------------------	-------------------------------------	-------------------------------	---	--

			Ratings			11-24
Parameter	Symbol	Conditions	min typ max		Unit	
VCC1 power supply current 1	ICC11	VSTBY_C = VSTBY_D = 0V (standby)		2.1	4	mA
VCC1 power supply current 2	ICC12	VSTBY_C = VSTBY_D = 0V (forward/reverse)		14	19	mA
VCC1 power supply current 3	ICC13	VSTBY_C = VSTBY_D = 0V (at braking)		10	14	mA
VCC2 power supply current 1	ICC21	VSTBY_C, D = 0V (standby (V _{CC} 1 = OPEN))			100	μΑ
VCC2 power supply current 2	ICC22	VSTBY_C, D = 0V (standby ($V_{CC}1 = 3.0V$))			100	μΑ
VCC2 power supply current 3	ICC23	VSTBY_C, D = 0V (forward/reverse)		15.0	25	mA
VS L power supply current	I VS L	VSTBY_C, D = 0V (standby)			20	μΑ
[Logic input (DEC1 pin, DEC2 pin)]						
High level input voltage	VINH	V _{CC} 1 = 2.7 to 4.0V	2.0		V _{CC} 1	V
High level flowing current	IINH	VIN = 3.0V		41	65	μΑ
Low level input voltage	VINL	V _{CC} 1 = 2.7 to 4.0V	-0.2		0.6	V
Low level flowing current	IINL	VIN = 0.6V		5	10	μΑ
[Loading motor driver]						
Output saturation voltage 1	VOH	IO = 200 mA (upper/lower composition)		0.2	0.3	V
Output saturation voltage 2	VSHIS	IO = 400 mA (upper/lower composition)		0.4	0.6	V
[Reel FG amplifier]						
Input offset voltage	VIO			±1	±5	mV
Input bias current	IB				1	μΑ
Common mode input voltage range	VICM		1		2	V
Open loop gain	GV1			55		dB
[Thermal shutdown circuit]						
TSD operating temperature	T-TSD	(Target)		180		°C
TSD temperature hysteresis width	∆TSD	(Target)		15		°C

Note) Items shown to be "Target" are not measured.

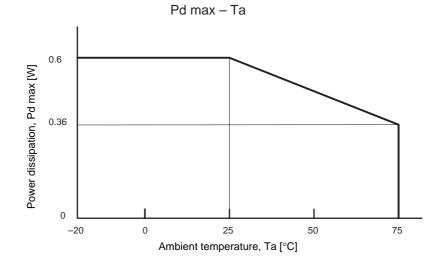
Truth Table

Capstan Motor Truth Table

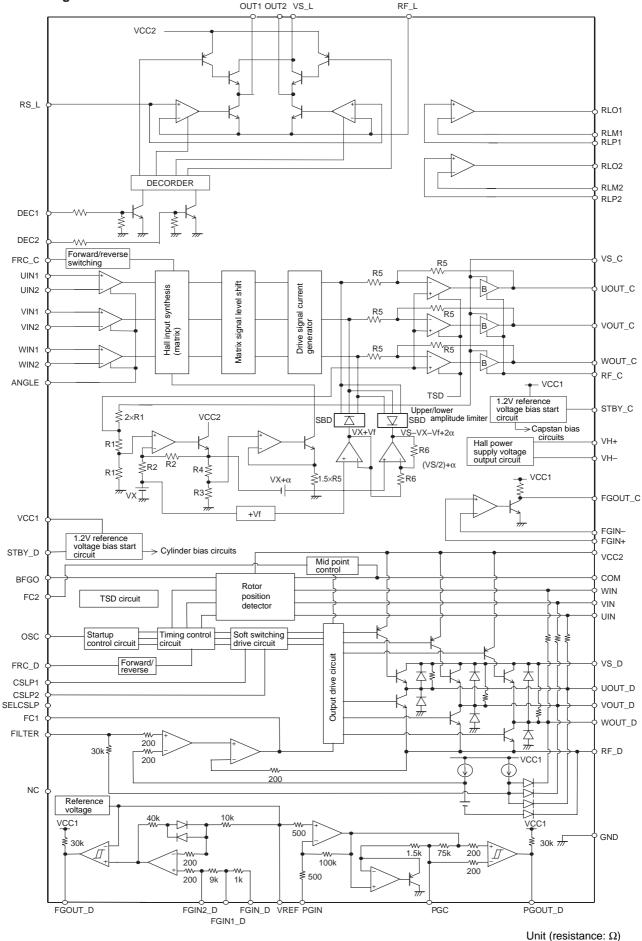

			Hall input		
	Source -> Sink	U	V	W	FRC
4	V -> W			1	Н
1	W -> V	H	Н		L
2	U -> W	н	L	1	Н
2	W -> U				L
2	U -> V				Н
3	V -> U	H	L	H	L
4	W -> V		1	Н	Н
4	V -> W				L
5	W -> U		н	н	Н
5	U -> W				L
6	V -> U		н	1	Н
6	U -> V			L	L

Note: "H" for FR means a voltage of 2.50V or above. "L" for FR means a voltage of 0.4V or below. (Vcc1 = 3V)

Note: At the Hall input, "H" means that the potential of the (+) terminal for each phase input is at least 0.02V higher than the (–) terminal. "L" means that the potential of the (+) terminal for each phase input is at least 0.02V lower than the (–) terminal.


Loading Motor Truth Table

Inp	out	Out	tput	Mode
DEC1	DEC2	OUT1	OUT2	
L	L	Off	Off	Standby
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake



Pin Assignment

Top view

Pin Description

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
50 49 48 47 46 45 39	Uin1 Uin2 Vin1 Win2 Win1 Win2 ANGLE	0 to V _{CC} 1	1	Capstan motor driver U, V, W phase Hall element input/output pins. Logic High means IN1 > IN2.
44 55 53 51 52	VS_C U-OUT_C V-OUT_C W-OUT_C RF_C	0 to V _{CC} 2	$1/4^{*}V_{S}$	Capstan motor output amplitude control power supply pins. Voltage must be lower than $V_{CC}2$. Capstan motor driver U, V, W phase output pins.
43	VH+			Hall element bias voltage supply pins. A voltage of 0.85V (typ.) is generated between VH+ and VH– (at IH = 5 mA).
42	VH–		approx. 1.9V 1.9	

Continued fi	rom	preceding	page
--------------	-----	-----------	------

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
37	FGIN-	0 to V _{CC} 1		FG comparator inverted input pin. No internal bias is applied.
38	FGIN+	-		FG comparator non-inverted input pin. No internal bias is applied.
36	FGOUT_C			FG comparator output pin. Internal load impedance is $20 \text{ k}\Omega$.
40	FRC_C	0 to V _{CC} 1		Capstan motor forward/reverse select pin. The voltage at this pin (with hysteresis) selects forward or reverse rotation.
2	STBY_C			This pin selects bias supply to capstan circuits other than FG comparator. Setting the pin to Low cuts off the bias supply. Capstan motor standby pin.
35	FGOUT_D		V _{CC} 1 V _{CC} 1 V _{CC} 1 V _{CC} 1 V _{CC} 35 35 35	FG amplifier output pin.
18	OSC			Pin for connecting triangular wave oscillator capacitor. Serves for forced startup waveform generation.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
19	FC1		V _{CC} 1 (19) (19) (19) (19) (19) (19) (19) (19	Frequency characteristics pin. Connecting a capacitor between this pin and ground serves to prevent closed-loop oscillation in the current control circuitry.
20	FILTER		V _{CC1} V_{CC1}	Connecting a capacitor between this pin and ground activates the coil output saturation prevention function. In this condition, the VS pin is controlled for motor voltage control. By adjusting the external capacitor, torque ripple compensation can be varied.
28	PGOUT D		V _{CC} 1 V _{CC} 1 V _{CC} 28 28 28	PG amplifier output pin.
29	PGC		V_{CC1}	PG amplifier peak hold capacitor connection pin.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
30	PGIN	max2.0V min1.0V (At V _{CC} = 3V)	30	PG amplifier input pin. Connect PG coil between this pin and VREF.
31	VREF		31 Vcc1 USYSE	Internal 1.3V reference voltage. Used as reference voltage for FG and PG amplifiers.
32	FGIN_D	max2.0V min1.0V (At V _{CC} 1 =	V _{CC} 1	FG amplifier input pin. Connect FG coil between this pin and VREF.
33	FGIN1_D	3V)		FG amplifier input signal noise filter capacitor connection.
34	FGIN2_D			FG amplifier input signal noise filter capacitor connection.
16	STBY_D	0 to V _{CC} 1	100kΩ 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ	When this pin is at 0.7V or lower or when it is open, only the FG/ PG amplifier operates. In the motor drive state, the pin should be at 2V or higher. Drum motor standby pin.

Image: Solution of the second seco	Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
41 V _{CC} 2 3.5V to 8.5V Power supply pin for supplying source side predriver voltage. Must be lower than VCC2 voltage 41 V _{CC} 2 3.5V to 8.5V Power supply pin for supplying source side predriver voltage and coll waveform detect comparato voltage. Common for loading capstan, and drum motors. 22 V _{CC} 1 2.7V to 6V Power supply pin for circuit except motor voltage, source side predriver voltage, and coll waveform detect comparato voltage. Common for loading, capstan and drum motors. 13 CSLP1 Image: CSLP1 Image: CSLP1 14 CSLP2 Image: CSLP1 Image: CSLP1 15 Image: CSLP1 Image: CSLP1 Image: CSLP1 14 CSLP2 Image: CSLP1 Image: CSLP1 15 Image: CSLP1 Image: CSLP1 Image: CSLP1 16 Image: CSLP1 Image: CSLP1 Image: CSLP1 17 Image: CSLP1 Image: CSLP1 Image: CSLP1 18 Image: CSLP1 Image: CSLP1 Image: CSLP1 14	17	FRC_D	0 to V _{CC} 1		Low: forward (–0.2V to 0.7V or open) High: reverse
22 V _{CC} 1 2.7V to 6V Power supply pin for circuit: except motor voltage, source side predriver voltage, and coi waveform detect comparato voltage. 22 V _{CC} 1 2.7V to 6V Power supply pin for circuit: except motor voltage, source side predriver voltage, and coi waveform detect comparato voltage. Common for loading, capstan and drum motors. 13 CSLP1 Image: CSLP2 Image: VCC1 Pins for connecting triangula wave coil output performs waveform soft switching 14 CSLP2 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 14 CSLP2 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 13 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 14 CSLP2 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 13 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 Image: VCC1 14 Image: VCC1 Image: VC1 Image: VC1 Image: VC1	60	VS_D	0V to VCC2		Power supply pin for determining output amplitude by supplying drum motor voltage. Must be lower than VCC2 voltage.
 CSLP1 CSLP1 CSLP2 <li< td=""><td>41</td><td>V_{CC}2</td><td>3.5V to 8.5V</td><td></td><td>Power supply pin for supplying source side predriver voltage and coil waveform detect comparator voltage. Common for loading, capstan, and drum motors.</td></li<>	41	V _{CC} 2	3.5V to 8.5V		Power supply pin for supplying source side predriver voltage and coil waveform detect comparator voltage. Common for loading, capstan, and drum motors.
14 CSLP2 VCC1 wave oscillator capacitor. This triangular wave coil output performs waveform soft switching	22	V _{CC} 1	2.7V to 6V		Common for loading, capstan,
performs waveform soit switching	13	CSLP1			Pins for connecting triangular
27 GND Ground pin for all circuits exception	14	CSLP2			wave oscillator capacitor. This triangular wave coil output performs waveform soft switching.
output.	27	GND			Ground pin for all circuits except

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
26	WIN		V _{CC} 1	Coil waveform detect comparator
24 25	UIN VIN		26 25 24 26 2000 2000 2000 2000 2000 2000 200	input pins.
23	СОМ			Motor coil midpoint input pin. Using this voltage as a reference, the coil voltage waveform is detected.
56	WOUT_D		- VO D	U, V, W phase coil output pins.
59	UOUT_D		VS_D	
58	VOUT_D		3.9Ω 56(58)59	
57	RF_D		57	Drum motor driver output transistor ground. Constant current drive is performed by detecting the voltage at this pin.
21	FC2			Output midpoint control. Oscillation prevention capacitor connection pin.
12	SELCSLP	0 to V _{CC} 1	V_{CC1}	When High, this pin sets CSLP slant to 15 times the slant at Low. When $V_{CC}1 = 3.0V$ 2.0V or higher: High 0.7V or lower: Low

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
15	BFGO		Vcc1 Vrlog Vlog (15)	Motor counter EMF voltage FG pulse pin. Outputs a pulse using W phase counter EMF voltage as FG. Connect to ground if not used.
5	VS_L	2.2 to V _{CC} 2		Loading motor power supply pin. Stabilize against noise in the same way as for VCC2.
62	RF_L		VS_L VS_L 62	Output transistor P–GND Output current can be detected for motor current control by inserting a resistor between Rf pin and ground.
63 61	OUT1 OUT2		VS_L 61 63 77 62	Loading motor driver output pins. Connect to loading motor.
6 7 11 10	RLM1 RLP1 RLM2 RLP2	0 to V _{CC} 1	6 Vcc1 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ	L–FG amplifier input pins. RLM1 and RLM2 are negative input. RLP1 and RLP2 are positive input.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
89	RLO1 RLO2			R–FG amplifier output pins.
3 4	DEC1 DEC2	0 to V _{CC} 1	$\begin{array}{c} & V_{CC1} \\ & 10k\Omega \\ \hline \\$	Loading motor input pins. When VCC1 = 3.0V 2.0V or higher: High 0.6V or lower: Low
64	RS_L	0 to V _{CC} 1 -1.5V		Current limiter setting pin. Set voltage between RF pin and ground, for limiting current.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1999. Specifications and information herein are subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.