

SEMICONDUCTOR®

NZT560/NZT560A

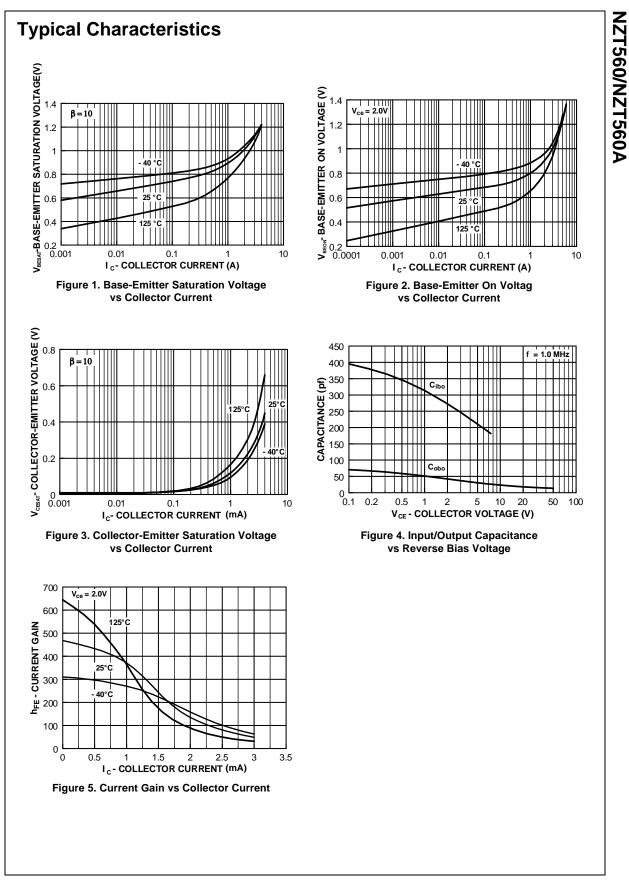
NPN Low Saturation Transistor

• These devices are designed with high current gain and low saturation voltage with collector currents up to 3A continuous.

1. Base 2. Collector 3. Emitter

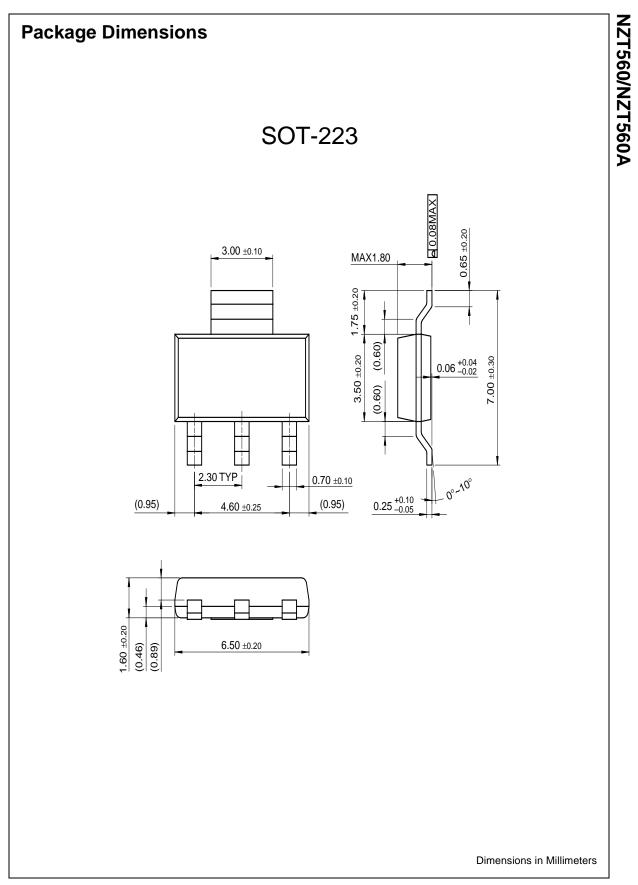
Absolute Maximum Ratings* T_A=25°C unless otherwise noted

Symbol	Parameter	NZT560/NZT560A	Units
/ _{CEO}	Collector-Emitter Voltage	60	V
/ _{СВО}	Collector-Base Voltage	80	V
/ _{EBO}	Emitter-Base Voltage	5	V
C	Collector Current - Continuous	3	А
J, T _{STG}	Operating and Storage Junction Temperature Range	- 55 ~ +150	°C


NOTES:
1) These ratings are based on a maximum junction temperature of 150°C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics TA=25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics	·	•	•		
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 10mA	60			V
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 100μA	80			V V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 100μA	5			V
I _{CBO}	Collector Cutoff Current	V _{CB} = 30V V _{CB} = 30V, T _A = 100°C			100 10	nA μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4V$			100	nA
On Charac	teristics *					
h _{FE}	DC Current Gain		70 100 250 80 25		300 550	
V _{CE} (sat)	Collector-Emitter Saturation Voltage				300 450 400	m∖ m∖ m∖
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 1A, I _B = 100mA			1.25	V
V _{BE} (on)	Base-Emitter On Voltage	$I_{C} = 1A, V_{CE} = 2V$			1	V
Small Sign	al Characteristics	•	•	•	•	
C _{obo}	Output Capacitance	V _{CB} = 10V, I _E = 0, f = 1MHz			30	pF
f _T	Transition Frequency	$I_{C} = 100 \text{mA}, V_{CE} = 5 \text{V}, \text{ f} = 100 \text{MHz}$	75			MH


Symbol	Parameter	Max.		Units
		NZT560	NZT560A	
D	Total Device Dissipation		1	W
θJA	Thermal Resistance, Junction to Ambient	12	25	°C/W

©2003 Fairchild Semiconductor Corporation

©2003 Fairchild Semiconductor Corporation

Rev. C3, January 2003

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.